
Benchmarking Distributed Data Processing
Systems for Machine Learning Workloads

Christoph Boden1,2, Tilmann Rabl1,2, Sebastian Schelter, and Volker Markl1,2

1Technische Universität Berlin, 2DFKI, Germany
firstname.lastname@tu-berlin.de

Abstract. Distributed data processing systems have been widely adopted
to robustly scale out computations on massive data sets to many com-
pute nodes in recent years. These systems are also popular choices to
scale out the training of machine learning models. However, there is a
lack of benchmarks to assess how efficiently data processing systems ac-
tually perform at executing machine learning algorithms at scale. For
example, the learning algorithms chosen in the corresponding systems
papers tend to be those that fit well onto the system’s paradigm rather
than state of the art methods. Furthermore, experiments in those papers
often neglect important aspects such as addressing all aspects of scalabil-
ity. In this this paper, we share our experience in evaluating novel data
processing systems and present a core set of experiments of a benchmark
for distributed data processing systems for machine learning workloads,
a rationale for their necessity as well as an experimental evaluation.

1 Introduction

Over the last years, we have observed a massive increase of available data. Due
to rapidly falling storage costs, the ominpresence of online web applications and
smart phones, text, audio, and video data as well as user interaction logs are
being gathered at impressive scale. These have successfully been leveraged to
build and significantly improve data-driven applications [35] and bossted scien-
tific research. With this data, it became feasible to test hypotheses on data sets
that are several orders of magnitude larger than before.

In light of the massive data sets being amassed, distributed data processing
systems commonly referred to as "Big Data Analytics" systems have been de-
veloped in order to scale out computations and analysis to such massive data
set sizes. The availability of massive data sets and these data processing sys-
tems together with machine learning algorithms have enabled remarkable im-
provements for a number of important tasks such as ranking web search results
[12][23] or personalized content recommendation [37] [22]. In this context, tt has
been observed that given enough data, comparatively simple algorithms could
deliver superior performance to more complex and mathematically sophisticated
approaches [31]. This observation and the ubiquity of data sets set of an unprece-
dented rise in demand for efficiently executing machine learning algorithms at

scale. It quickly became clear that the main representative of these new dis-
tributed data processing systems, Hadoop MapReduce, was inadequate for such
workloads, as it was inherently inefficient at their execution [49][36]. This led to
very active research and development of new systems and paradigms addressing
these drawbacks in distributed systems and database systems research commu-
nities [13][25][54][26][42].

But while the corresponding systems papers showed that these systems out-
perform Hadoop for certain iterative algorithms [54][5][41], it remains to be
shown how efficiently they actually perform at executing machine learning algo-
rithms at scale. On the one hand, the iterative algorithms chosen in the corre-
sponding systems papers were mostly learning algorithms that are well suited for
the underlying system paradigm rather than state of the art methods (e.g. gradi-
ent boosted trees) which would be the preferred choice for a supervised learning
problem without the presence of such systems’ constraints and are likely to pro-
vide superior prediction quality.

While existing Benchmarks for the performance evaluation of relational database
systems for transactional workloads (TPC-C) and OLAP workloads (TPC-H) are
widely accepted in industry and academia alike, the benchmarking landscape
for distributed data processing systems is by no means as mature. Efforts in
the benchmarking community, notably TPCx-HS and TPCx-BB [6][28] focused
on evaluating these systems for the use case they were originally designed for:
robustly scaling out simple computations and transformations to massive data
sets. There is a need for a Benchmark to adequately assess the performance of
scaling out machine learning workloads on data processing systems, consisting
of an objective set of workloads, experiments and metrics.

Contribution: In this paper we share our experience in evaluating novel
data processing systems for scalable machine learning workloads and outline
the requirements, intricacies and pitfalls that one encounters when developing a
benchmark for this scenario. Based on these insights, we specify what we deem
to be a core set of experiments that constitute a benchmark for distributed
data processing systems for scalable machine learning workloads and provide a
rationale for their necessity.

The remainder of the paper is structured as follows: first we provide a brief
overview of the machine learning workloads in Section 2. Subsequently we discuss
the intricacies of evaluating machine learning workloads an the need to explore
the model quality and runtime performance trade-off for distributed and single
machine implementations of machine learning algorithms. In Section 4 we discuss
the different aspects of scalability in the context of benchmarking distributed
dataflow systems for machine learning workloads and subsequently conclude the
paper.

2 Machine Learning for Data Processing Systems

The machine learning methods of interest in the context of distributed data pro-
cessing systems can be categorized into three major groups: Clustering, Classi-

fication and Recommender Systems. We will briefly introduce the notation and
representative algorithms chosen for our proposed benchmark experiments in
this Section. As a first pre-processing step, before the actual machine learning
algorithms can be applied, the raw data has to be transformed into a numeric
representation usually called features through so-called feature extraction. When
working with data from large-scale web applications, this processes consists of
acquiring, parsing and integrating huge log-files or raw text obtained from the
world wide web. The ultimate goal beeing the transformation of this data into
numerical feature values in the form of feature vectors x = (x1, . . . xn)

T . This
pre-processing step is undoubtedly a good fit for parallel execution on distributed
data processing systems. The usually very large raw data set sizes of input data
sets as well as the simplicity of the necessary transformations and aggregations
being applied to distill the feature vectors are exactly what these systems where
designed and built for. After processing the entirety of the input data, the re-
sulting training data set is generally represented by a numerical data matrix
X ∈ IR(n×d) consisting of all n training data points with a feature space dimen-
sionality d each.

2.1 Clustering (Unsupervised Learning)

A common task facing un-categorized data is to group data points into clusters
according to inherent structure in the data set. Such a clustering may provide
insight into the data by itself or serve as a input to further analysis or machine
learning tasks downstream. Given a data matrix A ∈ IR(n×d) without any asso-
ciated label or class information, the task in unsupervised learning or clustering
is to partition the data into subsets (or clusters) such that all elements within
one cluster are as similar as possible to each other yet as dissimilar as possible
to other clusters according to some particular similarity metric.

As a representative workload we propose the use of the popular algorithm for
clustering called k-means, which minimizes the intra-cluster distances between
the data points xi in a cluster j and it’s center (or centroid) µj : by solving the
following objective:

min

k∑
j=1

∑
i∈Cj

||xi − µj | |2

over the training data set X. The algorithm requires a Euclidean space and that
the number of clusters k is chosen a priori. The k-means algorithm solves the
optimization problem with the following heuristic: first, k cluster centers are
initially sampled from the data set, next, the euclidean distance to each of these
so called centroids is computed for every data point and finally every data point
is assigned to its closest centroid and thus a cluster. After this assignment, new
centroids are computed using the average of all cluster points. This iterates until
convergence.

2.2 Classification (Supervised Learning)

Contrary to the unsupervised learning setting, the main problem in supervised
learning is to fit a function f : X → Y that accurately predicts a label y ∈ Y
for unseen data points based on a set of training samples (xi, yi) ∈ X×Y . More
concretely, the objective of a classification algorithm is to learn a function

f : IRN → {0, 1}

that accurately predicts the labels y on previously unseen data points. The core
task of a supervised learning algorithm is thus to fit the parameters (also called
model weights) w of this function fw : X → Y leveraging the training data and a
so-called loss function l : Y × Y → IR which encodes the fit between the known
label y and the function prediction fw (x). To avoid that the function simply
learns idiosyncrasies of the input data rather than generalize well to unseen
data points, a so-called regularization term Ω (w) that encodes the complexity
of the model is often simply added to the objective (e.g. the L1 or L2 norm of
w). With this addition, the canonical supervised learning optimization problem
is given by:

ŵ = argminw

 ∑
(x,y)∈(X,Y)

l (fw (x) , y) + λ ·Ω (w)

Contrary to traditional optimization problems, the optimization of this ob-

jective is carried out on on a separate training data set that already has the
corresponding labels labels yi and not the actual data set we want to predict on.
The optimizer ŵ, which minimizes the objective on the training data set is then
used on unseen data in the hope that it generalizes well to unseen data.

Different instantiations of the prediction function f , the loss function l and
the regularizer Ω (w) in the canonical objective outlined above actually yield a
broad set of different supervised learning algorithm including logistic regression,
Support Vector Machines or LASSO and RIDGE regression as.

Solvers. The most commonly used instantiations of the loss functions l have
actually been designed to be both convex and differentiable, which guarantees
the existence of a minimizer ŵ. This enables the application of batch gradient
descent (BGD) and similar methods as a solver. BGD iteratively updates the
model weights according to the following step using the gradient of the loss until
convergence:

w′ = w − η

 ∑
(x,y)∈(X,Y)

∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

Unfortunately the batch gradient des cent algorithm requires to process the

entire training data set to compute just one gradient update. In particular for
very large data sets, stochastic gradient descent (SGD) is thus a more popular

alternative to BGD. Here. each data point, or a small "mini-batch" of data, is
used to compute a gradient update instead of the entire data set:

w′ = w − η
(
∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

)

2.3 Matrix Factorization

Another quite popular and successful category of machine learning algorithms
are recommender systems, where the task is to identify and recommend items
that a user might like based on historical data of user-item interactions, a tech-
nique called collaborative filtering (CF). Due to their success in the Netflix Prize,
latent factor models based on matrix factorization [37] are a popular choice for
this task. One common approach to compute such recommendations in the con-
text of distributed data processing systems is Alternating Least Squares (ALS)
[7][55]. The historical data consists of ratings r assembled in a ratings matrix
R = {ri,j} with the dimensions nu × ni where nu is the number of users and ni
is the number of items. The goal is to finds a low rank approximation to this
matrix based on the product of two, significantly smaller matricies: U and M
such that UM ≈ R, where U : nu × k and M : k × ni and k is the rank. ALS
finds the approximation by solving the following objective:

minU,M

∑
(i,j)∈I

(
ri,j − uTi mj

)2
+ λ

∑
i

nui
||ui||2 +

∑
j

nmj
||mj ||2

Where I is the set of (user, item) pairs for which ratings exist. Alternating
least squares solves this objective by alternatingly holding either U or M fixed
and solving a least squared problem to fit the "non-fixed" low-rank matrix.
Alternatively, the objective can also be solved with Stochastic Gradient Decent
[56] as introduced above. Here we randomly calculate gradient updates for a
randomly chosen (u, v) pair. SGD is a fast and popular method to solve a Matrix
Factorization problem, however it is is inherently sequential.

2.4 Deep Learning

The three aforementioned categories of machine learning algorithms: k-means
clustering for unsupervised learning, supervised learning based on a regular-
ized optimization approach and matrix factorization for recommendation mining
cover a large part of the machine learning applications in practice [3]. However,
next to these rather simple but quite effective methods, that have been proven
to excel in particular on very large data sets while being comparatively cheap
to train, another class of machine learning algorithm has gained significant at-
tention over the last couple of years: the popularity of training neural networks
with several layers (so-called “deep architectures”) architectures [29] has risen
significantly. Such deep neural network architectures (dubbed "deep learning")

have generated stunning results on a variety of machine learning tasks that can
roughly be categorized as cognitive tasks including visual object recognition,
object detection and speech recognition [38].

However these achievements did not come for free. Training state of the art
neural network architectures for these tasks requires tremendous computational
resources. Since there is little established methodology on who to build such net-
work architectures, one often resorts to intuition, know-how and significant “try
’n error” when developing new models, adding to the overall (computational)
cost. In consequence, deep learning approaches are not necessarily the "silver
bullet" to be applied to every problem setting at hand. In a lot of application set-
tings, the "traditional" approaches presented above turn out to deliver sufficient
prediction quality while requiring substantially less computational resources to
train.

The systems used to train deep neural networks also substantially differ from
general data processing systems. Since the training of such networks is almost
exclusively carried out using backpropagation and mini-batch stochastic gradient
descent, the requirements are different than those faced by the general purpose
data processing systems discussed in Section 1. These were build to address the
I/O and network communication bottlenecks generally faced in massively parallel
data processing. However, the training of deep neural networks is usually bound
by computational resources. Thus, dedicated systems like TensorFlow [4], CNTK
[53] or MXNet[20] were built and optimized for the particular use case of training
deep neural networks to a degree that was not possible for general purpose
distributed data flow systems, as the training algorithm (backpropagation) as
well as the data model (tensors) was already consensus and thus fixed.

Another important reason for the recent success of deep neural networks
can also be found in the availability of additional computational resources in
the form of GPUs, which provide at least an order magnitude more floating
point operations per second while being more power and cost-efficient than tra-
ditional CPUs. These affordable computational resources being readily available
actually enabled the quite computation-intensive training of artificial neural net-
works with "deep" architectures, which often translates to solving a non-convex
optimization problem, within reasonable time-frames. The obvious successes of
deep neural networks also prompted the development of purpose-built accelera-
tion hardware, e.g. Tensor Processing Units (TPUs) by Google, to further speed
up the training process.

Not least in order to steer the development of such hardware in a sensible way,
benchmarks tailored for deep learning settings are evermore important, however
given the intricacies of training deep learning models (e.g. degrading generaliza-
tion performance with increasing batch sizes [33]), and the level of specialization
of the systems involved, this can certainly be viewed as a separate problem do-
main in and of itself and orthogonal to the aspects of benchmarking general
purpose data processing systems for machine learning workloads discussed in
this work. For example, the recently introduced initiatives DAWNBench [21], an
End-to-End Deep Learning Benchmark Competition that invites submissions of

runtimes for specified tasks as well as MLPerf [2] that extends this concept to a
more broad set of tasks tackle exactly this issue and are thus orthogonal to the
work discussed in this paper.

3 Model Quality

Next to traditional runtime performance, benchmark experiments for machine
learning workloads have to take into consideration an important additional di-
mension: the inherent quality of trained models.

While conventional database queries have a deterministic result set which the
database system will always return, no matter which execution plan was chosen
by the database optimizer to produce the result, different machine learning ap-
proaches produce models with different prediction quality when trained on the
exact same data set. Popular empirical evaluations of various supervised learning
approaches show this [17][16]. Not only do different machine learning approaches
yield models of different quality, they also have different inherent runtime com-
plexity with respect to the number of training data points. When benchmarking
data processing systems for machine learning workloads we are thus faced with
a trade-off space spawned by the runtime of algorithms and the quality of the
models that they produce. Additionally, algorithms may or may not be a suitable
fit for the underlying systems paradigm and thus lead to additional inefficien-
cies when being implemented on top of a distributed data processing sytem. As
we mentioned in Section 1, the algorithms chosen for evaluation experiments in
the corresponding systems papers were mostly learning algorithms those that
are well suited for the underlying system paradigm rather than state of the art
methods. In consequence, it is imperative to take into account the dimension of
model quality when benchmarking data processing systems for machine learning
workloads and to conceive experiments that explore the trade-off space spawned
by the runtime of machine learning algorithms and the quality of the models
that they produce. Additional, state of the art, single node machine learning
algorithms, that may not be a good fit of a distributed data processing systems
paradigm, should be leveraged as competitive baselines for these experiments.

3.1 Experiments and Workloads

To address the requirements and explore the trade-off space spawned by the
runtime of machine learning algorithms and the quality of the models that they
produce, we propose to run training experiments with and without evaluation
of model quality on a held-out test data sets for varying amounts of iterations.
This way we can obtain both: the runtime of training itself and the corresponding
model quality at different points during training. (As distributed data processing
systems such as Apache Spark do not allow intermediate evaluation of models,
this translates to re-running the training with different numbers of iterations
from scratch, measuring the training time and subsequently evaluating model
quality on a held out set of test data.)

Parameter Tuning Machine learning algorithms tend to come with tunable
parameters specific to each model. The search for the optimal values for such
so-called hyperparameters can have significant impact on the resulting model
quality. To provide a level playing field, we designated equal time slots for pa-
rameter tuning with the means provided by the libraries evaluated across all
systems and libraries. A setting which reflects the reality in which practitioners
also only have limited amounts of time available for tuning parameters [10].

100 200 300 400 500 600 700 800
training runtime in seconds

0.92

0.94

0.96

0.98

1.00

1.02

RM
SE

 o
n

te
st

 se
t

LibMF SGD (1 node)
Spark ALS (6 nodes)
Spark ALS (3 nodes)
Spark ALS (2 nodes)
Spark ALS (2 nodes)

Fig. 1. Matrix Factorization of the Netflix Prize Data Set using Apache Spark MLlib’s
ALS implementation on six big (24 cores, 256 GB Ram) cluster nodes and LibMF one
big node. The plots show the root mean squared error (RMSE) achieved on a test
set achieved after a certain amount of training time. The Spark implementation takes
significantly more time to converge in comparison to the single machine library LibMF,
even when executed on multiple nodes.

Experiment 1: Matrix Factorization: we propose to run matrix factor-
ization for collaborative filtering as introduced in Section 2. While the presented
Alternating Least Squares approach is implemented in all popular distributed
data processing systems, single machine libraries using parallel SGD such as
LibMF 1[56] can be used for the single machine experiments. Next to training
runtime, we suggest to measure the Root Mean Squared Error (RMSE) as a
metric for model quality. Figure 1 shows the results of such an experiment com-
paring Spark MLLib’s ALS implementation against LibMF. It becomes apparent
1 https://www.csie.ntu.edu.tw/ cjlin/libmf/

that such an experiment shows the overhead one incurs for running a machine
learning algorithm on a scalable systems such as Apache Spark. The Spark imple-
mentation takes significantly more time to converge in comparison to the single
machine library LibMF, even when executed on multiple nodes. The experiments
were executed on nodes with: We thus propose experiments to explore all of these
dimensions.2 x AMD Opteron 6238 CPU with 12 Cores @ 2,6 GHz (24 cores),
256 GB RAM, 8x 2 TB Disk, 6 × GE Ethernet via a Cisco C2969-48TD-L Rack
Switch.

Experiment 2: Supervised Learning: we propose to evaluate logistic re-
gression and gradient boosted trees in both distributed data processing systems
and with sophisticated single machine libraries such as Vowpal Wabbit2 (LR
SGD), XGBoost3, LightGBM 4 or CatBoost5. Next to training runtime, we sug-
gest to use the Area Under the Curve (AuC) metric, as it is not sensitive to skew
in the test data set. As data set we suggest to use (potentially a subsample) of
the Criteo Click Log Data set presented in Section 4.3. (In [8] we presented
results for this experiment for Apache Spark MLLib.)

4 Scalability

The main premise of big data analytics systems is to scale out computation
across many machines in order to speed up I/O and to lower execution time. In
light of the massive data set sizes with billions of data points, this necessitates
scalable algorithms with respect to the input data size which has at worst linear
runtime complexity. With such scalable algorithms, the distributed data process-
ing systems can be leveraged and workloads can be scaled out by merely adding
machines in proportion to growing data set sizes. In light of cloud computing,
this can be automated and flexibly adjusted via auto-scaling according to the
load.

When training machine learning models on such systems, it is thus neces-
sary to utilize algorithms that fulfill the scalability requirement. As an example,
consider the common problem faced by web applications that display online ad-
vertisement to their users: click-through rate prediction. The task is to predict
whether a user will click on a displayed ad. Given the massive user bases of
popular online web applications, these models are trained on data sets hundreds
of terrabytes in size, containing hundreds of billions of data points. This data
also tends to be quite sparse (only 10-100 non-zero features per data point) but
also very high dimensional (up to 100 billion unique features according to a
google tech talk [15]). According to relevant literature, machine learning meth-
ods like regularized logistic regression are a popular and effective choice for the
click-through rate prediction problem [44][18][32][40] and a popular choice by

2 https://github.com/JohnLangford/vowpal_wabbit/
3 https://github.com/dmlc/xgboost
4 https://github.com/Microsoft/LightGBM
5 https://github.com/catboost/catboost

practitioners for general supervised learning settings [3] with very large data
sets [36].

As we argued in [9], the context of benchmarking data processing systems for
scalable machine learning workloads, there are several dimensions of scalability
that have to be taken into account:

1. Scaling the Data: as the term big data suggests, scaling machine learning
algorithms to extremely large data set sizes is the most obvious notion of
scalability. It is of particular importance to machine learning applications, as
it has been shown that that even quite simple machine learning models can
outperform more complex approaches when trained on sufficiently large data
sets [31][11]. This notion of scalability is arguably what the distributed data
processing systems introduced in Section 1 have been designed and built for.

2. Scaling the Model Size: as we indicated above, generalized linear models,
which are a popular choice in light of very large amounts of available training
data, tend to exhibit very high dimensionality. For example, classification
algorithms built on textual data using n-grams of words can easily contain
100 million dimensions or more. Models for click-through rate prediction for
online advertisements can even reach up to 100 billion dimensions [15]. Thus
it is also crucial to examine how distributed data processing systems scale
with increasing model dimensionality.

4.1 Experiments and Workloads

In this section we outline the experiments proposed to address the scalability
dimensions discussed above. As the hardware setup for on-premise clusters is
generally fixed in the short term, we introduce two new experiments to ade-
quately capture the desired scaling dimensions data and model for this setting
and finally complete the scalability experiments by adding the two traditional
notions of scaling as experiments - strong scaling and weak scaling:

Experiment 3: Production Scaling:We measure the runtime for training
a model of fixed dimensionality varying the size of the training data set on a
fixed number of nodes.

Experiment 4: Model Dimensionality Scaling: We measure the run-
time for training a model of varying dimensionality on a fixed number of nodes
and with constant training data set size. We propose a way to control the di-
mensionality in Section 4.3.

Experiment 5: Strong Scaling: We measure the runtime for training a
model on varying amounts of nodes while holding the data set size and model
dimensionality fixed.

Experiment 6: Weak Scaling: We measure the runtime for training a
model on varying amounts of nodes while also varying the data set size accord-
ingly, such that the problem size per processor as well as the dimensionality of
the model remains constant.

4.2 Workloads

We propose to evaluate the following workloads for the scalability experiments
outlined above:

– Regularized Logistic Regression: run logistic regression with a gradient
decent solver as suggested in [9] using the Criteo Click Log data with sub-
and super-sampling for scaling the data set size and feature hashing for
dimensionality scaling as discussed below in Section 4.3

– Alternating Least Squares Matrix Factorization: run ALS on gener-
ated data either based on characteristics of existing ratings data sets (e.g.
Netflix or MovieLens) as suggested in [49]. For the dimensionality scaling
we suggest to vary latent factor dimensionality (the rank) of the two factor
matrices.

– K-Means Clustering: run the clustering algorithm on generated data dis-
cussed below in Section 4.3.

4.3 Data Sets

We suggest to rely on generated data for the scalability unsupervised learning
as well as the matrix factorization experiments.(E.g. 100 dimensional data from
k Gaussian distributions and add uniform random noise to the data, similar to
the data generation for k-means in Mahout[1] and HiBench[34].)

For the classification workloads, we suggest the use of the Criteo Click Logs6

data set. This dataset contains click feedback for millions of display ads drawn
from a portion of Criteo’s traffic over a period of 24 days. It was originally
released as part of a Kaggle challenge for click through rate (CTR) prediction.
The dataset contains a label indicating the user action as well as 13 numeric and
26 categorical features. The entire data set spawns about 4 billion data points,
has a size of 1.5 TB.

As a pre-processing step we propose to use the popular hashing trick [52] to
expand the categorical features in the criteo click log data set. This hashing trick
transforms the categorical variables by applying a hash function to the feature
values and using the hash values as indices of the final feature vector. This is a
standard approach when working with the CTR data set from criteo. It also has
the nice property that it allows to control the dimensionality of the training data
vectors and thus the dimensionality of the supervised machine learning model
to be trained. This can be applied in the model scaling experiment we proposed
as Experiment 4 above.

5 Related Work

Benchmarking and performance analysis of data distributed data processing and
analytics frameworks have received some attention in the research community
6 http://labs.criteo.com/downloads/download-terabyte-click-logs/

[47][50] [51][43]. However most of the research papers focus on evaluating the
runtime and execution speed of non-representative workloads with respect to
machine learning such as WordCount, Grep or Sort. The ones that do focus
on machine learning workloads [14][9] neglect quality metrics such as accuracy
or AuC completely in their experimental evaluations. Unfortunately, the actual
systems papers of the data processing systems and paradigms such as Apache
Spark, Apache Flink or Graphlab [54][5][41] themselves do not contain any ex-
periments that would provide insight into the obtained machine learning model
quality. The MLlib paper introducing the Machine Learning library of Apache
Spark for example only reports speed-up of the runtime relative to an older
version of MLlib itself.

On the other hand there exist several efforts in evaluating a broad spectrum
of popular machine learning algorithms empirically [17][16] with a focus on pre-
diction quality. However the authors neglect the runtime of the algorithm and
do not consider distributed data processing systems.

Finally, there has been work comparing the runtime of popular graph pro-
cessing algorithms for distributed data processing systems against a competent
implementation on a single machine [45]. The authors propose COST (the Con-
figuration that Outperforms a Single Thread) as a new metric for distributed
data processing systems. The work showed that for the simple graph processing
algorithms evaluated, none of distributed data processing systems considered
managed to outperform a competent single-threaded implementation using a
high-end 2014 laptop. In contrast to the work presented here, the authors only
consider graph algorithms with a fixed result set and thus do not address issue
of model prediction quality and base their findings solely on runtimes published
in other papers, not their own experiments.

6 Conclusion

Distributed data processing systems that have originally been conceived to scale
out data-intensive computations on very large data sets to many nodes have
become popular choices to scale out the execution of machine learning algorithms
as well. However, there is still a lack of benchmarks to adequately assess the
performance of scaling out machine learning workloads on such data processing
systems, consisting of an objective set of workloads, experiments and metrics.

In this paper, we presented work on such a benchmark of distributed data
processing systems for machine learning workloads. In Section 3 we argued that
there is an additional challenge being faced when evaluating machine learning
algorithms the dimension of model quality. We proposed experiments to explore
the trade-off space spawned by the runtime of algorithms and the quality of the
models that they produce. We also made the case that state of the art single ma-
chine libraries should serve as sophisticated baselines in such experiments. Our
empirical evaluation of Apache Spark MLLibs alternating least squares algorithm
and LibMF as an SGD based single machine library for matrix factorization on
the netflix prize data set indicates that latest generation distributed data pro-

cessing systems like Apache Spark do incur a non-negligible overhead and thus
require more hardware resources to obtain comparable prediction quality with
a competent single machine implementation within a comparable time-frame.
Additionally in Section 4 we discussed several dimensions of scalability in the
context of distributed data processing systems. We proposed experiments that
cover both: scalability with respect to the input data set size as well as the model
dimensionality. With this we specified what we deem to be a core set of exper-
iments that constitute a benchmark for distributed data processing systems for
scalable machine learning workloads.

Acknowledgments

This work has been supported by the German Ministry for Education and Re-
search as Berlin Big Data Center BBDC (funding mark 01IS14013A).

References

1. https://mahout.apache.org/.
2. https://mlperf.org/.
3. https://www.kaggle.com/surveys/2017.
4. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine learning. In OSDI, pages
265–283. USENIX Association, 2016.

5. A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao,
M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax,
S. Schelter, M. Höger, K. Tzoumas, and D. Warneke. The stratosphere platform
for big data analytics. The VLDB Journal, 23(6), Dec. 2014.

6. C. Baru, M. Bhandarkar, C. Curino, M. Danisch, M. Frank, B. Gowda, H.-A.
Jacobsen, H. Jie, D. Kumar, R. Nambiar, M. Poess, F. Raab, T. Rabl, N. Ravi,
K. Sachs, S. Sen, L. Yi, and C. Youn. Discussion of BigBench: A Proposed Industry
Standard Performance Benchmark for Big Data. In R. Nambiar and M. Poess,
editors, Performance Characterization and Benchmarking. Traditional to Big Data,
page 44âĂŞ63, Cham, 2015. Springer International Publishing.

7. R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived
neighborhood interpolation weights. In Seventh IEEE International Conference
on Data Mining (ICDM 2007), pages 43–52, Oct 2007.

8. C. Boden, T. Rabl, and V. Markl. Distributed machine learning-but at what cost?
9. C. Boden, A. Spina, T. Rabl, and V. Markl. Benchmarking data flow systems

for scalable machine learning. In Proceedings of the 4th Algorithms and Systems
on MapReduce and Beyond, BeyondMR’17, pages 5:1–5:10, New York, NY, USA,
2017. ACM.

10. J.-H. Böse, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange, D. Salinas,
S. Schelter, M. Seeger, and Y. Wang. Probabilistic demand forecasting at scale.
Proc. VLDB Endow., 10(12):1694–1705, Aug. 2017.

11. T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean, and G. Inc. Large language
models in machine translation. In EMNLP, pages 858–867, 2007.

12. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1):107âĂŞ117, 1998. Proceedings of the
Seventh International World Wide Web Conference.

13. Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient iterative data
processing on large clusters. Proc. VLDB Endow., 3(1-2):285–296, Sept. 2010.

14. Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. Jermaine. A compari-
son of platforms for implementing and running very large scale machine learning
algorithms. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pages 1371–1382, 2014.

15. k. Caninil. Sibyl: A system for large scale supervised machine learning.
16. R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of

supervised learning in high dimensions. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages 96–103, New York, NY, USA,
2008. ACM.

17. R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learn-
ing algorithms. In Proceedings of the 23rd International Conference on Machine
Learning, ICML ’06, pages 161–168, New York, NY, USA, 2006. ACM.

18. O. Chapelle, E. Manavoglu, and R. Rosales. Simple and scalable response predic-
tion for display advertising. ACM Trans. Intell. Syst. Technol., 5(4):61:1–61:34,
Dec. 2014.

19. T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

20. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015.

21. C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, and M. Zaharia. Dawnbench: An end-to-end deep learning
benchmark and competition. ML Systems Workshop @ NIPS 2017, 100(101):102,
2017.

22. A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:
Scalable online collaborative filtering. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 271–280, New York, NY, USA,
2007. ACM.

23. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, Jan. 2008.

24. P. Domingos. A few useful things to know about machine learning. Commun.
ACM, 55(10):78–87, Oct. 2012.

25. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.
Twister: A runtime for iterative mapreduce. In Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing, HPDC ’10,
pages 810–818, New York, NY, USA, 2010. ACM.

26. S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative data
flows. Proc. VLDB Endow., 2012.

27. J. H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29:1189–1232, 2000.

28. A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen.
Bigbench: Towards an industry standard benchmark for big data analytics. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’13, pages 1197–1208, New York, NY, USA, 2013. ACM.

29. I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.
30. J. L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533, May

1988.
31. A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE

Intelligent Systems, 24(2), Mar.
32. X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich,

S. Bowers, and J. Q. n. Candela. Practical lessons from predicting clicks on ads at
facebook. In Proceedings of the Eighth International Workshop on Data Mining for
Online Advertising, ADKDD’14, pages 5:1–5:9, New York, NY, USA, 2014. ACM.

33. E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In NIPS, pages
1729–1739, 2017.

34. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Benchmark Suite:
Characterization of the MapReduce-Based Data Analysis, pages 209–228. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

35. H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ra-
makrishnan, and C. Shahabi. Big data and its technical challenges. Commun.
ACM, 57(7):86–94, July 2014.

36. L. Jimmy and A. Kolcz. Large-scale machine learning at twitter. SIGMOD 2012,
2012.

37. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, Aug. 2009.

38. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.
39. J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Morgan and

Claypool Publishers, 2010.
40. X. Ling, W. Deng, C. Gu, H. Zhou, C. Li, and F. Sun. Model ensemble for click

prediction in bing search ads. In Proceedings of the 26th International Conference
on World Wide Web Companion, WWW ’17 Companion, pages 689–698, Republic
and Canton of Geneva, Switzerland, 2017. International World Wide Web Confer-
ences Steering Committee.

41. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

42. Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Heller-
stein. Graphlab: A new framework for parallel machine learning. arXiv preprint
arXiv:1408.2041, 2014.

43. O. C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernéndez. Spark ver-
sus flink: Understanding performance in big data analytics frameworks. In IEEE
CLUSTER 2016, pages 433–442, Sept 2016.

44. H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie,
T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M.
Hrafnkelsson, T. Boulos, and J. Kubica. Ad click prediction: A view from the
trenches. In KDD ’13. ACM, 2013.

45. F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost? In
USENIX HOTOS’15. USENIX Association, 2015.

46. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia,
and A. Talwalkar. Mllib: Machine learning in apache spark. J. Mach. Learn. Res.,
17(1):1235–1241, Jan. 2016.

47. K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. Making sense
of performance in data analytics frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, NSDI’15, pages
293–307, Berkeley, CA, USA, 2015. USENIX Association.

48. M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: Estimating the
click-through rate for new ads. In WWW ’07. ACM, 2007.

49. S. Schelter, C. Boden, M. Schenck, A. Alexandrov, and V. Markl. Distributed
matrix factorization with mapreduce using a series of broadcast-joins. ACM RecSys
2013, 2013.

50. J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan. Clash
of the titans: Mapreduce vs. spark for large scale data analytics. Proc. VLDB
Endow., 8(13), Sept. 2015.

51. J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Tourifio. Performance
evaluation of big data frameworks for large-scale data analytics. In IEEE BigData
2016, pages 424–431, Dec 2016.

52. K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, pages 1113–1120, New York,
NY, USA, 2009. ACM.

53. D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev,
Y. Zhang, F. Seide, H. Wang, et al. An introduction to computational networks
and the computational network toolkit. Microsoft Technical Report MSR-TR-
2014–112, 2014.

54. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. NSDI’12, 2012.

55. Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative
filtering for the netflix prize. In Proc. 4th IntâĂŹl Conf. Algorithmic Aspects in
Information and Management, LNCS 5034, pages 337–348. Springer, 2008.

56. Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix
factorization in shared memory systems. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 249–256, New York, NY, USA, 2013.
ACM.

