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ABSTRACT
Recommender systems are ubiquitous in themodern internet, where
they help users find items they might like. A widely deployed rec-
ommendation approach is item-based collaborative filtering. This
approach relies on analyzing large item cooccurrence matrices
that denote how many users interacted with a pair of items. The
potentially quadratic number of items to compare poses a scalabil-
ity bottleneck in analyzing such item cooccurrences. Additionally,
this problem intensifies in real world use cases with incrementally
growing datasets, especially when the recommendation model is
regularly recomputed from scratch. We highlight the connection
between the growing cost of item-based recommendation and den-
sification processes in common interaction datasets. Based on our
findings, we propose an efficient incremental algorithm for item-
based collaborative filtering based on cooccurrence analysis. This
approach restricts the number of interactions to consider from
‘power users’ and ‘ubiquitous items’ to guarantee a provably con-
stant amount of work per user-item interaction to process. We
discuss efficient implementations of our algorithm on a single ma-
chine as well as on a distributed stream processing engine, and
present an extensive experimental evaluation. Our results confirm
the asymptotic benefits of the incremental approach. Furthermore,
we find that our implementation is an order of magnitude faster
than existing open source recommender libraries on many datasets,
and at the same time scales to high dimensional datasets which
these existing recommenders fail to process.
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1 INTRODUCTION
Today’s internet users face an ever increasing amount of data, which
makes it constantly harder andmore time consuming to pick out the
interesting pieces of information from all the noise. This situation
has triggered the development of recommender systems: intelligent
filters that learn about the users’ preferences and figure out the
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most relevant information for them. With rapidly growing data
sizes, the processing efficiency and scalability of machine learning-
based systems and their underlying computations becomes a major
concern as well as their ability to continously update the underlying
models [26, 31].

Item-based collaborative filtering, a classic approach to recom-
mender systems [27, 28], is based on the idea of inspecting item
cooccurrences (“people who interact with X also interact with Y”).
It has the advantage of being intuitive to understand, due to the
direct inspiration by recommendation in everyday life, where we
tend to check out things that seem similar to what we already like.
Because of these properties, item-based recommendation methods
are widely deployed in industry [8, 9, 16], and form a strong base-
line for recent approaches such as recurrent neural networks [17].
An operational aspect that makes item-based recommendations par-
ticularly useful is that the resulting models are easy to deploy with
relational databases [29] or conventional text search engines [12].

In common with most other recommendation systems, end-to-
end deployments of item-based recommenders typically regularly
execute an offline learning phase to compute a model that is after-
wards served for realtime recommendation. While this approach to
update a recommender system is conceptually simple, it has a set of
major drawbacks: (i ) it is costly to recompute models from scratch
and (ii ) with growing input data, the growing job times make it
more difficult to adhere to service-level agreements for downstream
systems; (iii ) furthermore, rapidly emerging trends and changes
in the data are not picked up immediately. Unfortunately, tackling
these drawbacks is not trivial, as the runtime of a naive approach
to cooccurrence analysis grows superlinearly with the number of
users in the data and quickly encounters memory pressure.

We therefore propose to replace the offline recomputation of
the model with an efficient online algorithm with a provably con-
stant amount of work per interaction to process. Our approach
updates the parts of the model which are affected by the new in-
teractions, instead of recomputing the model as a whole. We first
introduce cooccurrence analysis as the basis of item-based rec-
ommendation (Section 2), outline scalability issues in item-based
recommenders and discuss how these issues increase over time.
We connect these scalability issues to well-known densification
processes [20] in interaction datasets which lead to a growth of
the average number of items with which a user interacts over
time (Section 3.2). We adapt so-called ‘interaction cuts’ from previ-
ous work [32], which alleviate this scalability bottleneck using an
approach based on reservoir sampling. The intuition behind these
cuts is that they restrict the influence of interactions from ‘power
users’ and very popular items (e.g., ‘Lord of the Rings’ in a movie
recommendation scenario), which are not indicative of the taste
of the majority of users. We derive an incremental version of the

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


SSDBM ’19, July 23–25, 2019, Santa Cruz, CA Schelter et al.

cooccurrence-based recommendation algorithm and prove that this
algorithm only requires a constant amount of work to incorporate
a new user-item interaction into the recommendation model (Sec-
tion 3.3). Next, we detail how to implement the algorithm efficiently
on a single machine, and furthermore describe a distributed im-
plementation in the stream processing engine Apache Flink [6]
in Section 4. We review related work in Section 5, and present an
extensive experimental evaluation of our proposed algorithm in
Section 6, in which we investigate the benefits of an incremental
approach, compare our implementation to existing libraries and
analyze its scalability.

The contributions of this paper are the following:

• We propose an efficient online algorithm for cooccurrence-based
recommendation, which guarantees a constant amount of work
per interaction to process (Section 3).
• We highlight the connection between the cost of item-based rec-
ommendation and densification patterns in common interaction
datasets (Section 3.2).
• We discuss efficient implementations of our algorithm on a sin-
gle machine and on a distributed stream processing engine (Sec-
tion 4).
• We present an experimental evaluation which confirms that the
incremental approach is substantially faster than batch recom-
putation. We find that our implementations outperform existing
libraries by an order of magnitude or more on many datasets,
and scale to high dimensional datasets which existing libraries
fail to process (Section 6).

2 BACKGROUND
We introduce cooccurrence analysis as a general form of item-based
collaborative filtering for recommendations, and describe a common
end-to-end deployment of such a recommender system. As already
stated, item-based collaborative filtering [28, 32], compares user
interactions to find related items in the sense of: ‘people who like
this item also like these other items’. In a movie recommendation
case for example, the system records which movies often cooccur
in the viewing histories of users. These pairs of cooccurring movies
are then ranked and form the basis for recommendations later on.
While academic research often restricts itself to predicting so-called
explicit feedback for items (e.g., ‘five-star ratings’ for movies [5]),
cooccurrence analysis focuses on the more general use case of
implicit feedback which comprises of count data that can be easily
gathered by recording user actions (such as purchases in online
shops or the number of plays of a video on a movie platform). Note
that this kind of data covers a much wider range of use cases than
rating data, which requires explicit user actions and is only available
in a limited set of domains (e.g., for movies or songs).
Deployment of item-based recommenders. A common way to
implement and deploy an item-based collaborative filtering system
is depicted in Figure 1. An offline training phase is conducted reg-
ularly. It computes a ‘similarity matrix’ of cooccurring item pairs
and ranks these with a similarity measure or statistical tests. From
these cooccuring items, a set of so-called indicators is retained per
item, which comprise of its most strongly associated items. These
indicators for each item form the recommendation model, and these
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Figure 1: Traditional deployment of an item-based recom-
mender system: New user interactions require a full, costly
recomputation of the item similarities and the indexed item
indicators. Often this recomputation is executed in regular
intervals (e.g., nightly) withmassively parallel systems such
as Spark or Hadoop.

indicators are subsequently used to derive recommendations in re-
altime. Typically the system serving the recommendation model
treats a list of items the user has interacted with recently as a query
for a search engine or database, where items are indexed by their
indicators. The ranked results comprise the items to recommend to
the user. Such ‘recommendation queries’ can additionally filter the
recommendations by additional indexed content (such as the cate-
gory of products for example) [12, 28]. Note that efficiently serving
recommendation models is a research area of its own, which is out
of the focus of this work.
Computation of indicators from the cooccurrence matrix.
We briefly detail how to compute the cooccurrence matrix and
how to select the indicators from the item cooccurrences using
statistical tests. Cooccurrence analysis works as follows: We repre-
sent the observed interactions between users U and items I by a
binary matrix A ∈ {0, 1} |U |× |I | , whose rows correspond to users,
and whose columns correspond to items. A cell ai j of this matrix is
set to one if user i interacted with item j and zero otherwise. In this
setting, the computation of the cooccurrence matrix C corresponds
to the matrix product C = ATA. An entry c j1 j2 of C denotes the
number of users that interacted with both item j1 and item j2. This
entry is obtained by computing the dot product between the respec-
tive columns A•j1 and A•j2 of A which corresponds to counting
the overlapping user interactions of items j1 and j2.

For rating data, the item pairs are usually scored with a similarity
function [28]. Instead, we focus on the strategy of identifying highly
anomalous cooccurring item pairs with the loglikelihood-ratio (LLR)
based G-test [11, 23]. In real world scenarios, where we deal with
noisy, highly skewed count data, this approach is often preferred
over similarity measures that were originally designed for rating
data (according to our personal experiences with recommender
systems deployed in industry). We use the statistic to retain a fixed
number of anomalously cooccurring items per item, which we store
as item indicators.

We compute the LLR-score from the entries of a contingency
table summarizing the relationship between a particular pair of
items j1 and j2. The table can be calculated from the cooccurrence
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matrix and consists of four different counts: k11 denotes how often
we encountered both items j1 and j2 in a user history; k21 denotes
how often we encountered item j1 in combination with other items
than j2 in a user history (and vice versa for k12), while k22 denotes
how many item pairs we saw which neither include j1 nor j2:

item j1 no item j1
item j2 j1 and j2 (k11) j2 without j1 (k12)

no item j2 j1 without j2 (k21) neither j1 nor j2 (k22)

Given these counts from the contigency table, we calculate the
score llr(j1, j2) of the item pair as follows [11]:

2N ·[ ent(k11,k12,k21,k22) − ent(k11 + k12,k21 + k22)

− ent(k11 + k21,k21 + k22)]

where N denotes the total number of cooccurrences and ent com-
putes Shannon’s entropy. Note that the LLR-score is equal to the
mutual information between the row and column vector of the
contingency table scaled by 2N .

3 ALGORITHM
Wefirst introduce notation and provide an overview of the proposed
algorithm. Afterwards, we outline general scalability issues when
applying cooccurrence analysis to large datasets and develop our
online algorithm. Figure 2 illustrates our proposed approach.
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Figure 2: Proposed approach: Upon arrival of new user in-
teractions, we conduct online point updates in the history
matrix and cooccurrence matrix (with constant amount of
work per interaction), and recompute only the affected item
indicators.

Overview and notation. As already mentioned in the previous
section, we assume that all interactions between usersU and items I
that occur over time are captured in a binarymatrixA ∈ {0, 1} |U |× |I | .
Instead of working directly with this matrix to compute a recom-
mendation model from time to time, our algorithm maintains two
other matrices to incrementally compute the item indicators which
will be used for recommendation in the end. We process each new
interaction (i, j ) as follows:
(1) We incrementally maintain a history matrix H ∈ {0, 1} |U |× |I | ,

which contains a subset of A such that it has a bounded number
of interactions per item and user.

(2) We incrementallymaintain the cooccurrencematrixC ∈ N |I |× |I |
with C = HTH which denotes how often pairs of items occur
together in user histories in H.

(3) For each update, we recompute the affected item indicators with
loglikelihood-ratio based scores.

3.1 Scalability Issues
Before we get to the online variant of our recommendation algo-
rithm, we need to understand general scalability issues of cooccur-
rence analysis for large datasets. For that, we examine the cost of
computing the cooccurrence matrix. In the worst case, this cost
would be quadratic in the number of items |I |, as we would have to
compare all pairs of items for all users. In reality however, the cost
is much less than that, because almost all users interact with only a
small fraction of the items. A simple way to compute the cooccur-
rence matrix is to pick a user, count all pairs of items in the history
of her items, and repeat this step for all users [28]. For any user i ,
this involves only the non-zero entries ofAi• (i.e., the items that she
interacted with): We see that the cost of this algorithm decomposes

for user i :
for history item j1 ∈ Ai• :

for history item j2 ∈ Ai• :
c j1 j2 ← c j1 j2 + 1 // count item pair (j1, j2)

by users: Let li denote the total number of items
∑
j ai j that user

i interacted with. Then we have to look at all resulting item pairs.
This requires a quadratic amount of operations per user i , resulting
in a total effort of γ ∝

∑
i l

2
i . This illustrates that the cost of the

computation γ is dominated by the densest rows of A, resulting
from the actions of the users with the highest number of items in
their item history.

3.2 Power Law Patterns in Interaction Data
We continue to investigate how users with a high number of inter-
actions impact the runtime of cooccurrence analysis, and focus on
how this effect evolves over time. Fortunately and unfortunately,
interaction datasets share a common property with many datasets
representing the outcome of human behavior: the distribution of the
number of interactions with contained entities is highly skewed [4],
and this characteristic even increases over time in many datasets.
In network analysis, it has been found that many networks follow
a densification power law pattern, e.g., that the average vertex de-
gree in those networks grows proportionally to a power law over
time [20].
Densification in interaction datasets. We investigate whether
this is also the case for interaction data. We therefore adapt the
techniques from [20] and analyse the temporal evolution of user
interaction histories in three time-stamped datasets1 from different
domains: StackOverflow, which comprises of 1,301,942 favorites of
545,196 users for 96,680 posts on a question-answering platform,
DBLP, which contains 18,986,618 co-authorship relations between

1The networks as well as their corresponding statistics are publicly available via the
Koblenz Network collection at http://konect.uni-koblenz.de/networks/{dblp_coauthor,

stackexchange-stackoverflow, lastfm_band}.
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1,314,050 researchers, and lastFM, a dataset containing 19,150,868
plays of 174,077 bands by 992 users. As the densification process has
been studied for networks, we model these interaction datasets as
bipartite networks [19], where users and items form the vertex sets
and interactions connect these vertices as edges. Here the average
size of the user interaction history corresponds to the average out-
degree of user vertices. We plot the number of users versus the
number of interactions over time on a doubly logarithmic scale
in Figure 3. The apparent straight line hints at the existence of a
growth power law for the average length of the user history. We fit
a line to the data to confirm this, and find R2 values over .99 in all
cases.
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Figure 3: Temporal growth of the average length of the user
interaction history in several interaction datasets. We plot
the number of interactions versus the number of users in
log-log scale. The corresponding datasets obey the densifica-
tion power law for networks (slopes: α = 1.03, 1.36, 2.0, note
that slope 2 occurs due to the fact that lastFM counts multi-
ple interactions of a user with the same song).

Growth of the average user history length. This analysis con-
firms that the average user history length grows with a power law
over time, which poses a huge challenge for cooccurrence-based
recommendation algorithms, because their computational cost is
quadratically proportional to the contained user history sizes (as
we explained in the previous section). In the case of a power law
densification over time, the skew of the history size distribution
increases, which leads to a superlinear growth of the computa-
tion cost for interaction datasets with a growing number of users.
Temporal patterns like densification are often not examined by the
research community as academics usually only have access to static
snapshots of real world interaction datasets.

3.3 Incremental Cooccurrence Analysis
We detail the proposed incremental version of the cooccurrence
analysis algorithm. It turns out that we can omit certain elements of
A in the history matrix H. This has the effect of making the overall
computation much cheaper, but also makes it possible to compute
the effect of each new interaction with strictly bounded effort. We
restrict the size of any individual’s history and the frequency of
any particular item.
‘Interaction cuts’. The insight that the full cooccurrence cost γ is
quadratically proportional to the user history lengths γ ∝

∑
i l

2
i ∈

ω ( |U |) implies that naive cooccurrence computations will not scale
to real world datasets. Any new interaction for user i has the poten-
tial to produce as many as li cooccurrences. Since the number of in-
teractions for any given user increases without bounds, this means

that a strictly real-time update of the model using naive cooccur-
rence is not possible. We placed bounds on the per user interaction
cost of the cooccurrence computation in previous work [32] on effi-
cient batch recommendation. The idea is to define a threshold kmax
(called ‘user interaction cut’) for the number of item interactions
to remember per user. If a user’s interaction history exceeds this
bound, a random subset of size kmax is used for the computation
of the cooccurrence matrix. Note that this cut typically only applies
to a small fraction of the overall users (sometimes referred to as
‘power-users’). In real world scenarios, such users often correspond
to automated bots or accounts shared bymany people (which do not
provide valuable input data to the recommender system anyways),
and the interaction cut has been shown to have negligible effects on
the prediction quality on hold-out sets [17, 32]. Similar techniques
are used in natural language processing, e.g., approaches such as
word2vec [25] typically incorporate such a limit automatically by
considering only cooccurrence within a fixed distance or within a
single sentence. In practice, variants of the interaction cut might be
applied in order to for example retain more recent items or highly
preferred items rather than a random sample.

The bound enforced by the user interaction cut makes the cooc-
currence computation scalable no matter the form or evolution of
A, as there are at most k2max item pairs to count per user and thus
γ ∝
∑
i min(kmax , li )2 ≤ k2max |U | ∈ O ( |U |). We also introduce a

second threshold fmax (called ‘item interaction cut’) for the num-
ber of user interactions to consider per item. This threshold only
applies to ‘ubiquitous items’ and has a similar effect as the frequent
item downsampling employed in word2vec or as stopword removal
in information retrieval, where common words are removed as they
typically provide only little discriminative information. The item
interaction cut makes the maximum cooccurrence count relatively
small (≤ fmax ) and with the user interaction cut, the total number
of non-zero pairs in the cooccurrence matrix is relatively small
(≤ k2max |U |) as well. Note that we will experimentally evaluate the
effects of the proposed interaction cuts of the prediction quality in
the further course of this section.

By putting a bound on the number of non-zeros per row and
column of the history matrix, we also bound the costs of the update
∆(HTH) resulting from a new interaction (i, j ) to the cooccurrence
matrix C. Due to the addition of an interaction of user i with item
j, a matrix E ∈ {0, 1} |U |× |I | which has ei j = 1 and zero for the
remaining entries will be added to H, resulting in the following
change:

∆(HTH) = (H + E)T (H + E) − HTH

= ETH + HTE + ETE

=



0
Hi•
0


+
[
0 HT

i• 0
]
+ δ (j j )

Here, δ (j j ) ∈ {0, 1} |I |× |I | denotes a matrix with all zeros except
for δj j = 1. As the number of non-zeros in Hi• is at most kmax ,
the resulting updates involves at most twice the user interaction
cut kmax + 1 items. This bound on the number of updates trivially
bounds the update time. With the item interaction cut at kmax we
have ∆(H

TH)0 ≤ 2kmax + 1 ∈ O (1).
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Incremental maintenance of the interaction cuts. In order to
incrementally maintain the desired sparsity of the history matrix
H, we apply reservoir sampling as depicted in Algorithm 1. The
algorithm takes a new interaction (i, j ) between a user i and an item
j as input, and updates the history matrixH such that the maximum
number of non-zero entries per row is kmax (the user interaction
cut) and the maximum number of non-zero entries per column
is fmax (the item interaction cut). It maintains a |U |-dimensional
vector l which denotes the total number of interactions observed
for each user, independent of whether we accept the interaction
into H. For a new interaction (i, j ), we proceed as follows. First,

Algorithm 1: Updating the history matrix for a new inter-
action (i, j ) between user i and item j; we enforce the user
interaction cut kmax for the number of items per user and the
item interaction cut fmax for the number of users per item in
the history matrix H.
/* increment total interaction count for user i , regardless of whether
we accept this interaction in H or not */

1 li ← li + 1
/* Will be true for the majority of items */

2 if item j has less than fmax interactions in H :
/* Will be true for the majority of users */

3 if user i has less thankmax interactions in H :
4 add new interaction (i, j ) to history matrix
5 else:

/* user history in H changes with decreasing probability
depending on the total number of interactions li we have
already seen for user i */

6 with probability kmax / li :
7 choose random item r from history of user i in H

/* item r gets pushed out, its interaction count is decreased, and it
will be reconsidered in line 2 the next time its seen (as its count
is guaranteed to be less than fmax ) */

8 replace item r with item j

we increment the total observed interaction count li for the user
i in line 1. Next, we compare the current number of interactions
of the item j in H with the desired frequency cut fmax in line 1.
If the threshold is exceeded, we ignore the interaction. The point
of checking the item interaction cut first is that extremely popular
items (e.g., ‘Lord of the Rings’ in a movie dataset) quickly go into a
state where they are ignored and no more work will be required to
keep their counts up to date. They may only be reconsidered later
however if they get pushed out of user histories in the subsequent
steps. If the interaction passes the check, we compare the current
number of interactions of user i in H to the interaction cut kmax in
line 3. If the user has fewer interactions inH than the cut, we accept
the new interaction and append it to the user’s history in line 4. This
will happen for almost all users. In the rare case where a user already
haskmax interactions in her history, we randomly replace one of the
existing items with the new item j with a probability of kmax / li as
shown in lines 6 to 8 (note that this probability decreases inversely
proportional with the total number of interactions li which we
have already seen for user i). When changing the user history, we

choose a random item r from the user’s history and replace it with
item j . As the interaction count of item r in H decreases in this case,
item r will pass the condition in line 2 the next time it is found
in an interaction, and it has a chance to re-enter the matrix (as its
interaction count in H is guaranteed to be less than fmax ).
Effects of interaction cuts. We empirically validate the benefits
of interaction cuts to confirm the findings from [17, 32]. We apply
different interaction cuts kmax and fmax to the three time-stamped
interaction datasets StackOverflow, DBLP and lastFM introduced
earlier in this section. For each dataset, we provide several measure-
ments. Figure 4 shows (i ) the overlap in the top-10 indicated items
per item for different cuts compared to the original dataset, (ii )
the runtime required to compute the indicators for different cuts,
compared to the runtime on the original dataset, (iii ) the effect on
prediction quality. For the latter, we hold out 10 items from the
interaction history of each user with 20 or more interactions. We
make recommendations for these users by finding the top 10 items
not already in the user’s history. Recommended items were ranked
by the overlap of the user’s history with the top-100 indicators for
each item. We compare the precision@10 of the top 10 predicted
items to the held out items for the original data and different cuts.
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Figure 4: Effect of different interaction cuts on indicators,
runtime and prediction quality for three datasets from dif-
ferent domains. The dotted line represents the results on the
original datawith no cuts applied, the y-axis denotes the per-
centage of indicator overlap, runtime and prediction quality
compared to execution with no cuts applied.

The dashed gray line in Figure 4 indicates the results for the
original data without application of the cuts. We see that the cuts
quickly provide a high degree of overlap of item indicators (except
for very small cuts). For cuts between 500 and 1,000 interactions per
item and user, we find an overlap of 80% to 99% percent, depending
on the dataset. At the same time, the cuts have a tremendous impact
on the runtime, as they filter out the ‘power users’ and ‘ubiquitous
items’ that have a disproportionate effect on the runtime. For the
lastFM and stackoverflow datasets, we always run in less than half
of the runtime when interaction cuts were used. For DBLP, the
runtime was only reduced by 20% compared to the runtime on the
original data in the end, which we attribute to the fact that there
are only very few users with a very high number of co-authors.

The most interesting result is shown in the rightmost plot, where
we see the effect on prediction quality: While the quality slightly
decreases for the lastFM data with the cuts, applying the cuts in-
creases the average prediction quality for the other datasets. For
the stackoverflow data the increase can be as high as 15% better
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precision. We attribute this effect largely to the removal of ubiqui-
tous items since the user interaction cut would only affect a small
minority of all users making it hard to change the average precision.
The downsampling of highly frequent terms in word2vec [25] is
motivated by similar improvements in quality. With larger cut sizes,
we converge to the prediction quality on the unsampled data on
average. This confirms our previous finding [32] that a cut size
between 500 and 1,000 appears to be a reasonable default choice
across many datasets. Cut thresholds of this size do not change
item indicators very much, decrease runtime significantly, and have
little or no negative effect on the average prediction quality.
Efficient indicator updates. After having updated the cooccur-
rence matrix C, we recompute the item indicators which are af-
fected by the changed cooccurrences. Algorithm 2 shows the steps
required to recompute indicators Sj for item j . Our goal is to update
this set to hold the list of n items with the largest LLR scores. For
each row, we keep a min-heap of (item, LLR-score) tuples, where the
ordering is based on the LLR scores and then on item id. In order to
conduct this update, we need read access to the cooccurrence ma-
trix C, the total number of cooccurrences N , and the vector of row
sums r of C. For every item q that cooccurs with item j , we compute

Algorithm 2: Recomputing the top-n indicators Sj for a
particular item j from the cooccurrence matrix C and its row
sum r.
1 function rescore(j,n):
2 Sj ← min-heap with capacityn
3 for c jq ∈ non-zero entries of Cj• :

/* compute LLR score from contingency table */
4 k11 ← c jq
5 k12 ← r j − k11
6 k21 ← rq − k11
7 k22 ← N − k12 − k21 + k11
8 sq ← llr(k11,k12,k21,k22)

/* maintain top-n item-score tuples via a min-heap */
9 if heap Sj has less than n entries :

10 add item item-score tuple (q, sq ) to heap
11 else:
12 if sq is larger than the heap root :
13 update heap root with (q, sq )

14 return Sj

the counts k11, k12, k21, k22 of the contingency table between j and
q (as described in Section 2) as follows in lines 4 − 8. The number
of cooccurrences k11 of j and q corresponds to the entry c jq . The
number of cooccurrences k12 of j with items other than q is r j −k11.
The number of cooccurrences k21 of q with items other than j is
rq − k11, and the number of observed cooccurrences containing
neither j nor q is N − k12 − k21 + k11. Using the contingency table,
we compute the LLR score sq for the cooccurrences between j and
q. If the heap for Sj contains less than n entries, we push the tu-
ple (q, sq ) onto the heap (lines 9 and 10). Otherwise, we compare
the current score sq to the current smallest score from the tuple
sitting on top in the heap (by invoking peek) and update the heap

if sq is larger than the smallest score in the heap (lines 12 and 13).
Since every update operates exclusively on the indicators for an
individual item j and only requires read access to C, recomputing
all affected item indicators is embarassingly parallel.
End-to-end algorithm. We combine history matrix maintenance,
cooccurrence updates and indicator recomputation into an end-to-
end approach to incremental cooccurrence analysis in Algorithm 3.
Note that we omit the trivial updates of the overall number of
cooccurrences N and the row sums of the cooccurrence matrix for
readibility. Lines 2 to 23 contain the interwoven update steps for
the history matrix and cooccurrence matrix, either directly incor-
porating a new interaction (lines 5 to 10) or replacing a previously
selected one (lines 11 to 23). In the end, we trigger the parallel
indicator recomputation for all affected items (lines 24 and 25). In a
real-world deployment, the recomputed indicators would then lead
to a corresponding update in the system serving the recommen-
dation model (e.g., update of a search index for the items whose
indicators changed).

It is useful from an algorithmic and cost analysis perspective to
think about updating themodel and the intermediate data structures
for each new user-item interaction in isolation. In real systems how-
ever, online recommendation algorithms often need to be turned
into a mini-batch variant which processes a small batch of newly
observed interactions at a time (e.g., all interactions from the last
minute) instead of only a single interaction. The main benefit from
this is a reduction of coordination costs between different systems
because of less frequent interactions, and an increased control over
update intervals. Our end-to-end version in Algorithm 3 can easily
be run in mini-batch mode: we first sequentially execute the history
matrix updates of H and the corresponding updates of the cooc-
currence matrix C for all interactions contained in the batch. Next,
we collect the items for which we need to recompute indicators
(the set R) for all interactions processed, and execute the indicator
recomputation for all affected items q ∈ R in parallel.

4 IMPLEMENTATION
While it is clear that interaction cuts will improve the runtime for
computing and maintaining indicator sets for items, there are still
some interesting optimizations available in the implementation it-
self. The available optimizations are, not surprisingly, very different
depending on whether the implementation targets a single machine
scale-up architecture or a streaming scale-out architecture.

4.1 Single Machine
In our single-machine implementation2, we apply Algorithm 1 in a
single pass over the mini-batch and thereby maintain the history
matrixH. As we bound the number of interactions per user because
of the user interaction cut kmax , the memory requirements for the
underyling array data structure to represent H is at most |U |kmax .
For any accepted interaction, we update the appropriate entries
in H and the corresponding cooccurrence counts in C. We repre-
sent the sparse cooccurrence matrix C as an array of hashmaps
indexed by row to allow for fast random access to the cooccurrence
counts. As the maximum cooccurrence count between two items

2https://github.com/sscdotopen/puppies/blob/master/src/lib.rs
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Algorithm 3: End-to-end incremental cooccurrence anal-
ysis algorithm for updating the history matrix H, the coccur-
rence matrix C and for recomputing affected item indicators
from a new interaction (i, j ).
1 initialize set of items to rescore R
/* increment total interaction count for user i */

2 li ← li + 1
3 if item j has less than fmax interactions in H :
4 if user i has less thankmax interactions in H :
5 for item p ∈ user history Hi• :

/* record cooccurrence with item j */
6 c jp ← c jp + 1
7 cpj ← cpj + 1
8 add item p to set of items to rescore R

/* add item j to history of user i */
9 hi j ← 1

10 add item j to R, the set of items to rescore
11 else:

/* accept (i, j ) with probability kmax / li */
12 n ← uni f ( 0, li )
13 if n ≤ kmax :
14 r ← index of n-th non-zero column in Hi•

/* remove item r and add item j to history of user i */
15 hir ← 0
16 hi j ← 1

/* update affected coocurrence counts */
17 for itemq ∈ user history Hi• :
18 ciq ← ciq + 1
19 cqi ← cqi + 1
20 cqr ← crq − 1
21 crq ← cqr − 1
22 add item q to set of items to rescore
23 add items j and r to set of items to rescore

24 for itemq ∈ items to rescore R do in parallel :
25 Sq ← rescore(q,n);

is fmax with fmax typically in the hundreds, 16-bit precision is
sufficient for the representation of the underlying matrix entries.
As discussed in Section 3.3, the total number of non-zero entries in
the matrix C is at most |U |k2max . After updating the cooccurrence
matrix, we recompute the set of indicators S affected by the items
in the current mini-batch. As already mentioned, this computation
is embarrasingly parallel. We execute the operations in a multi-
threaded fashion with read-only access to the cooccurrence matrix.
As depicted in Algorithm 2, we maintain a priority queue of maxi-
mum size n for each item, holding the LLR scores and identifiers
of the current top-n highest associated items. The total memory
requirement for this data structure amounts to at most |I |n. Our
algorithm is written in Rust 1.20 using fnv::FnvHashMap to represent
the rows of the cooccurrence matrix and scoped::ScopedPool for
concurrency.

Optimized loglikelihood-ratio computations. Initial profiling
showed that the runtime is dominated by the calculation of loga-
rithms for the loglikelihood-ratio score in the rescore function. We
introduce two optimizations to reduce the number of logarithm
computations. First, we manually apply common subexpression
elimination in our code. Next, we observe that five out of the nine re-
maining logarithm computations have their argument in the range
[0, ( fmax kmax − 1)]. This stems from the fact that an item can
at most occur in fmax user histories, each of which can contains
only a maximum of kmax − 1 other items. We precompute all the
logarithms in this range. In micro-benchmarks, we find that these
optimizations approximately halve the runtime of the loglikelihood-
ratio tests.

4.2 Stateful Stream Processor
Our distributed implementation3 is based on the stream process-
ing engine Apache Flink [6]. Figure 5 gives an overview of the
corresponding dataflow, which has three distinct phases: (i ) dis-
tributed history matrix updates, (ii ) cooccurrence updates and (iii )
indicator recomputation. A distributed implementation cannot be
a straightforward translation of the proposed algorithm, due to
multiple challenges with respect to how to access and update the
application state in a distributed setting. Due to partitioned state ac-
cess, it becomes difficult to provide consistency when maintaining
the history matrix. Furthermore, we lose ordering guarantees once
we partition the stream across multiple independent subtasks, and
therefore require windowing constructs for updating the history
matrix and the cooccurrence matrix. Finally, we need upstream
feedback to maintain the interaction cuts in the history matrix.
Distributed application of the ‘interaction cut’. We partition
the item and user interaction update operators across two dif-
ferent keyed state instances. Note that it is not possible to up-
date both of these state instances atomically. Interactions flow
from the ItemInteractionUpdater (which checks the item interac-
tion cut and keeps track of the item interaction counts) down-
stream to the UserInteractionUpdater, which maintains the user
interaction cut and keeps track of the corresponding user interac-
tion counts. An interaction that passes the item interaction cut at
the ItemInteractionUpdater might be subsequently rejected by the
UserInteractionUpdater. Therefore, we require an upstream feed-
back mechanism and may encounter short temporal inconsistencies
of the counts for an item in the brief timespan before the feedback
is incorporated. Our implementation prevents overcounting and

3https://github.com/uce/flink-cooccurrence
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Figure 5: Our algorithms as dataflow in Apache Flink.
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enforces the cuts, but can result in temporary undercounting in two
situations: (i ) When an item count is optimistically incremented
and reaches the item interaction cut but does not pass the user in-
teraction cut, the next interaction for that item will be ignored until
the upstream feedback arrives. (ii ) When the item count for an item
has reached the item interaction cut and a user interaction results
in an interaction with that item to be replaced, new interactions
for that item will be ignored until the upstream feedback for the
replacement arrives. Note that these situation only occurs for items
which have already received many interactions, making it unlikely
that the ignored interaction will strongly affect the LLR score. We
conclude that this implementation is a reasonable approximation
of the original algorithm since we still enforce the cuts and the
common cases are handled well. We experimentally validate this in
Section 6.3. We implement both update operators with tumbling
event time windows to ensure order between events. We group all
interactions by their corresponding time window before conduct-
ing the updates. Thereby we guarantee an order by the mini-batch
granularity (e.g., the window for the i-th minute will be processed
before the window for the i + 1-th minute). Such windowing is
necessary as progress of event time is only tracked locally per
stream partition (and we re-partition the data between the update
operators). Furthermore, we need ordered output from the update
operators for the downstream operations. We implement a custom
operator for the upstream feedback. On a logical level, the dataflow
simply has a feedback edge from the UserInteractionUpdater to the
ItemInteractionUpdater. Physically, Flink’s internal graph abstrac-
tion that specifies the dataflow does not allow us to create loops.
Instead we implement the item update operator with two inputs:
its regular input and a feedback source, and the subsequent update
operator only gets a single output downstream and a reference to
an in-memory blocking queue for the feedback in the user code.
We accomplish this via a co-location scheduling constraint that
guarantees that the i-th subtask of the UserInteractionUpdater and
the i-th subtask of the feedback source are executed on the same
worker instance, analogous to constructs that Flink leverages for
its iterative dataflow abstraction [14].
Cooccurrence matrix updates. Next, we implement the cooccur-
rence matrix update. The ItemRowAggregator aggregates all item
cooccurrences for a single item and the ItemRowSumAggregator ag-
gregates the row sums. The ItemRowRescorer (which will consume
their outputs afterwards) needs access to a single row holding the
cooccurrences for a single item and all row sums. Both of these
must be consistent with each other for a specific time window in
order to guarantee consistent results during rescoring. We achieve
this by again applying a tumbling event time window which groups
the interactions by their event time. When a window fires, we emit
aggregated row sum updates and item cooccurrence updates down-
stream to the rescoring operator. The emitted values correspond
to the deltas for items that occurred in the current window. The
ItemRowRescorer is responsible for recomputing the indicators for
all items with changed cooccurrences. While this an embarrassingly
parallel operation, a challenge arises as we require global access to
the row sums of all items (denoted as r in Algorithm 2). For that,
we implement a streaming broadcast join which broadcasts the out-
put of the ItemRowSumAggregator to all parallel instances holding

the rows of the cooccurrence matrix. We use Flink’s time progress
tracking via watermarks to decide when to evaluate the join. We
buffer all received events from both sides, and when the watermark
advances, we join all buffered elements that have a timestamp lower
or equal to the watermark. We consume the buffered events and ap-
ply the deltas to the global row sums and each cooccurrence vector.
This gives us the global view, which we keep in sync by following
the watermark progress. After having applied all the delta updates
for a certain timestamp, we recompute all item indicators up to that
point in time.

5 RELATEDWORK
Recommender systems are an active field of research [27]. In con-
trast to our work, many papers focus on ‘explicit feedback’ data (e.g.,
star ratings for movies) instead of the prevalent implicit feedback
data (e.g., counts of views of product pages) and ignore the issue
of skew in the data (which increases over time), as the majority of
researchers only have access to static datasets.
Item-based collaborative filtering. Sarwar et. al [28] introduced
the classical item-based collaborative filtering approach which com-
putes a matrix of similarities based on cooccurrences between items
in user interactions. In previous work, we proposed a parallel for-
mulation of this approach for map-reduce [32], which introduced
the interaction cuts leveraged in this work. Implementations of
neighborhood-based methods can be found in many popular recom-
mender libraries, e.g., in Apache Mahout [32], Lenskit [13] and My-
MediaLite [15], and industry deployments [8, 9, 16]. There have been
some proposals of incremental item-based recommenders already.
Liu et al. [22] introduce time-based exponential decay to down-
weight past interactions for example. However their work only
focuses on rating prediction with Pearson correlation as similarity
measure and does not address the issue of skew over time. While
they conduct no extensive performance evaluations, they report up
to 20x speed increase in comparison to a non-incremental approach
which is consistent with our experimental findings. StreamRec [7] is
a real time recommender system based on the incremental computa-
tion of cosine similarities, which again only focuses on rating data.
It is not clear that any of these implementations have hard bounds
on the cost of a single update and thus it is not clear that any of them
are suitable for hard real-time use. Another line of research are
in-database recommender systems. RecStore [21] is a DBMS storage
engine module for the online model maintenance of neighborhood-
based recommenders. It features different materialization strategies
for intermediate results. Unfortunately, the paper does not discuss
skew in the data and the proposed solution is only evaluated on a
small dataset. RecDB [29, 30] is a PostgreSQL-based system provid-
ing recommendation inside the database engine, which introduces
new query operators inside the database kernel. Again the work
focuses on rating data only and is evaluated only on small datasets
with less than one million interactions.
Latent factor models. Due to the Netflix prize competition [5], so-
called latent factor models, based on matrix factorization [18] have
become widely popular for recommendation. These approaches
are primarily designed for rating data and minimize the empirical
regularized squared error of the model predictions to the observed
ratings by projecting users and items onto a joint latent space.
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However, the recommender systems community has acknowledged
a set of drawbacks stemming from a sole focus on rating predic-
tion [3, 24], and the winning algorithms from the Netflix prize have
never been put into production [2]. Compared to latent factor mod-
els, neighborhood-based methods are complementary, simpler in
their structure, and put their focus on local relationships between
items rather than global patterns (distances in the joint latent space).
Neighborhood-based methods shine performance-wise in the pre-
diction phase: they just require search in a sparse indicator index,
which is much cheaper than maximum inner product search in a
dense matrix for latent factor models. Due to their high sparsity,
the indicators produced by cooccurrence analysis can be efficiently
indexed with a search engine or database, which allows queries
to additionally filter recommendations based on item predicates.
Another advantage of neighborhood methods is that they naturally
handle new users (which are represented by the set of their item
interactions), while latent factor models either require a retrain-
ing step or some way to project these new users into the latent
space. Finally, cooccurrence-based recommendations are easy to
explain as they are able to provide instant justifications for their
recommendations by presenting the list of cooccurring items used
for the recommendation. There has also been research on devel-
oping online versions of latent factor models [1]. Diaz-Aviles et
al. [10] treat online collaborative filtering as online ranking prob-
lem, and propose a stream ranking matrix factorization approach
based on selective sample of the stream, which they evaluate on
a large dataset of tweets. Factorbird [33] is a prototype of a scal-
able matrix factorization approach built on the parameter server
architecture, which has been leveraged to compute factorizations
of large interaction networks at Twitter.
Deep neural networks. While deep neural networks exhibit mas-
sive potential for improving recommender systems, it has recently
been shown that classical item-based methods constitute a strong
baseline for deep networks in tasks such as session-based recom-
mendation [17]. Additionally, the authors report that the item-based
method applied in this work is an order of magnitude faster to train
than the recurrent neural network which it was compared against.

6 EXPERIMENTAL EVALUATION
In the experimental evaluation, we focus on the efficiency and
scalability of our proposed algorithm, as the prediction quality of
item-based recommenders is already established [17, 28, 32] and
we investigated the effect of our cuts on prediction quality in Sec-
tion 3.3. We experimentally validate that an incremental approach
is preferable over repeated recomputations, we compare our solu-
tion to various existing libraries, validate that the history matrix
maintenance works as intended, and finally investigate scalability
properties of our single machine and distributed implementations.

The datasets we use for performance evaluation are shown in
Table 1 : Movielens1M4, a popular dataset of movie ratings, DBLP5
coauthorships and Twitter which contains user mentions of hash-
tags, that we extracted from the public twitter stream of January
20176. We also evaluate on the Netflix [5] movie ratings dataset and

4https://grouplens.org/datasets/movielens/1m/
5http://konect.uni-koblenz.de/networks/dblp_coauthor
6https://archive.org/details/archiveteam-twitter-stream-2017-01

a large publicly available dataset of song ratings from Yahoo Mu-
sic7. If not explicitly mentioned otherwise, we process the data in

dataset #users #items #interactions

Movielens1M 6040 3796 1,000,209
DBLP 1,314,051 1,314,051 18,986,618
Twitter 8,094,909 3,070,055 27,344,275
Netflix 480,189 17,770 100,480,507
Yahoo Music 1,823,179 136,736 699,640,226

Table 1: Datasets used during evaluation.

chronological order if timestamps are available and set the number
n of indicators to compute per item to 10, and the user interaction
cut kmax and item interaction cut fmax to 500 based on our find-
ings in Section 3.3. If not indicated otherwise, we experiment using
our single machine implementation in Rust 1.20 on a machine with
an Intel i7-7700HQ CPU @ 2.8GHz and 16GB of RAM, running
Ubuntu Linux 16.04.

6.1 Benefits of Incrementalized Computation
Initially, we investigate the benefits of updating the recommen-
dation model in an incremental fashion. We aim to showcase the
improvements which an incremental approach provides. We com-
pare this to the common use case of completely recomputing the
indicators in regular intervals (e.g., once per day), as outlined in
Section 2. We leverage theMovieLens1M, DBLP and Twitter datasets,
which we partition into inputs of 10, 000, 250, 000 and 500, 000 inter-
actions. We prepare the inputs to match the batch and incremental
execution modes, e.g., for the batch variant then-th input comprises
of the union of all inputs up to n, whereas for the incremental vari-
ant the n-th input only contains the interactions of input n. In the
batch variant, we have to read in the complete dataset up to the
current batch before being able to recompute the indicators. In the
incremental variant, we only make a single pass over the data and
update the existing indicators. Both variants apply interaction cuts.
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Figure 6: Comparison of repeated batch recomputation of
the item indicators (whose costs grows linearly with the
datasize) to an incremental update of the indicators with a
bounded update cost.

Figure 6 illustrates the resulting runtimes of both the batch and
incremental variant. We see that the incremental execution has
an analogous effect on the runtime for all datasets: the amount
of work that is required per input is virtually constant across all
7http://webscope.sandbox.yahoo.com
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Our approach MyMediaLite RecDB
dataset train predict train predict train predict

Movielens1M 18 0.5 87 0.2 30 1 per user
DBLP 234 6.6 - - - -
Twitter 114 18 - - - -

Table 2: Batch train and predict times (in seconds) of our
approach compared to MyMediaLite and RecDB on differ-
ent datasets. Note that - indicates that the recommender ran
out of memory or was not able to finish training within one
hour.

inputs, scaling with the size of the input and not with the size of
the growing dataset. Additionally, the incremental variant exhibits
low variance in the daily runtime. The runtime of the batch variant
on the other hand is linearly growing with the increasing size of
the overall dataset. Even in this small experiment, the runtime for
the last input is more than an order of magnitude less than in the
incremental case for all three datasets. This experiment confirms
that our incremental variant changes the asymptotic cost of repeat-
edly computing the item indicators from scaling with the growing
dataset size to scaling with the number of newly added records
instead. The slight growth of the incremental runtime occurs due
to the accumulation of more potential cooccurrences, their number
is eventually bounded however as detailed in Section 3.3.

6.2 Comparison Against Existing Item-Based
Recommenders

In the next set of experiments, we compare our proposed approach
with existing recommendation libraries. It turned out to be sur-
prisingly difficult to find a publicly available implementation of
an incremental item-based collaborative filtering approach. Both
StreamRec [7] and RecStore [21] are not available as open source, and
other established libaries such as Apache Mahout [32], Lenskit [13],
MyMediaLite [15] and RecDB8 [30] do not support incremental
training for item-based recommenders out-of-the-box. We show
(i) that existing libraries have scalability issues, and cannot even
handle medium-sized datasets; (ii) that it is not sufficient alone
to use an incremental approach, but that it is very important to
carefully choose the applied data structures and update strategies
in order to tackle said scalability issues.

We first present an experiment for the non-incremental case,
comparing our approach to the recommendation libraries RecDB
and MyMediaLite, which do not support incremental training. We
aim to show that standard implementations of item-based collabo-
rative filtering have scalability issues (even in the non-incremental
case), and that the interaction cuts and careful consideration of the
applied data structures are already necessary for handling medium-
sized datasets in cooccurrence-based computations. We conduct
an end-to-end comparison for the Movielens1M, DBLP and Twitter
datasets, where we compute the item indicators and sequentially
retrieve 10 recommended items for every user in the dataset after-
wards. The end-to-end comparison is necessary as RecDB does not

8RecDB supports incremental training in principle, however this is currently not
implemented in the open source version as the authors confirmed via mail).

allow us to conduct the training alone and access the resulting indi-
cators. As these libraries do not support loglikelihood-ratio-based
tests, we run them with cosine-based item similarities (which are
computationally cheaper than our approach because no logarithms
need to be computed). We summarize the experimental outcome in
Table 2. Our Rust-based implementation conducts the training for
Movielens1M in 18s, and produces recommendations for all 6040
users in less than 500ms. We compute the recommendations by
identifying the items that most often occur in the indicators of the
user’s history items. In the case of the DBLP dataset, the training
takes less than four minutes (234s) and we compute the recommen-
dations for 1, 314, 051 users in 6.6s. Finally, we train the model for
the Twitter data in less than two minutes (114s) and take 18s to
compute recommendations for all 3, 070, 055 users.
Comparison to RecDB. For our evaluation of RecDB, we imple-
ment the experiment by a adapting a python script shipped with
RecDB. We import the interaction data via a COPY statement, create
a recommender for the resulting table, and ask for recommenda-
tions for each user afterwards with the RECOMMEND clause provided
by RecDB. For the Movielens1M data, the import and recommender
setup takes less than 30s, and each query for 10 recommendations
for a particular user returns in about 1.1s. For both the DBLP and
Twitter dataset, we abort the experiment after one hour as the
CREATE RECOMMENDER statement did not return in that time.
Comparison toMyMediaLite. We repeat the end-to-end compar-
ison experiment for MyMediaLite, where we leverage its ‘ItemKNN’
algorithm to compute 10 recommendations for each user in the
data using item-based collaborative filtering with cosine similarity.
MyMediaLite trains on Movielens1M in 87s and produces recom-
mendations for all users in 200ms. On the DBLP and Twitter data,
it unfortunately crashes due to a lack of memory, even though it
has 16GB of RAM available.

The fact that both RecDB and MyMediaLite fail to process the
DBLP and Twitter datasets (which both have a size of less than
200MB when stored as gzip-compressed CSV files) highlights the
importance to carefully choose appropriate data structures for
cooccurrence-based computations, especially for extremely sparse
but high dimensional data that is commonly encountered in real
world use cases. Our Rust implementation carefully allocates mem-
ory when necessary for the intermediate data structures, and is
therefore able to compute the indicators for each of these datasets
in less than four minutes.
Comparison to Mahout Taste. In order to have a comparison
against an external library for the incremental case, we decided
to compare our single machine implementation to a customly de-
signed, incrementalized implementation of the standard item-based
approach [28] from the Taste recommendation library9, which is
part of Apache Mahout. (Note that Taste, in contrast to most other
algorithms in Mahout, is a purely Java-based implementation that
does not rely on map-reduce). As incremental updates are not natu-
rally supported in Taste, we mimic this behavior by implementing
an updatable version of Taste’s DataModel class, which holds the

9https://github.com/apache/mahout/blob/master/mr/src/main/
java/org/apache/mahout/cf/taste
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Figure 7: Comparison of incremental indicator computation
in Mahout Taste and our Rust implementation. Taste ex-
hibits amuch steeper runtime growth pattern although both
approaches apply the interaction cuts.

interaction data in hashmaps, and recompute the indicators us-
ing multiple threads with Taste’s MostSimilarEstimator from the
GenericItemBasedRecommender class, employing an implementation
of loglikelihood-ratio tests via the LoglikelihoodSimilarity class.
We evaluate both approaches on theMovielens1M,DBLP and Twitter
datasets, which we again partition into inputs of 10, 000, 250, 000
and 500, 000 interactions. Figure 7 illustrates the resulting process-
ing times per input over time. While both approaches manage
to handle the incremental computations, we see vastly different
growth patterns in the runtime, although both Mahout and our
implementation apply the interaction cuts. The main difference
however is that our algorithm carefully updates not only the history
matrix but also the cooccurrence matrix, which is not supported by
Taste (e.g, Taste does not provide an abstraction for that). Instead,
the MostSimilarEstimator from Taste conducts a search in the his-
tory matrix each time we recompute the item indicators. This subtle
difference has a tremendous effect on the resulting runtimes, e.g.,
for the last batch in Movielens1M, our implementation requires 0.4
seconds while Taste needs 23 seconds, and this is true for the other
datasets as well (12s versus 50s for DBLP, and 6s versus 76s in case
of the Twitter data).

6.3 Enforcing Interaction Cuts
In this experiment, we empirically validate that our implementa-
tions of the algorithm for updating the history matrix (Algorithm 1
in Section 3.3) correctly enforce the desired user interaction cut
and item interaction cut. We generate a synthetic dataset from two
independent two-parameter Poisson–Dirichlet distributions with
α = 6000 and d = 0.3. These distributions are helpful for generating
power law distributed data, and have the property that the number
of unique elements will increase roughly according to αTd where
T is the number of samples taken. Also, the fraction of elements
that have only been seen once will be roughly equal to d . We take
100 million samples. Note that we choose the parameters so that
after these 100 million samples, the number of unique elements
(1−d ) α Td is approximately 1 million.We apply our single machine
implementation of Algorithm 1 to this data with both interaction
cuts set to 100, 200, 300 and 500 respectively. After that, we compute
the cumulative distribution function of item interaction counts and
user interaction counts for the resulting history data. We find that
the approach works as intended as the probability of seeing a user
or item with more interactions than dictated by the cut drops to
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Figure 8: Left: For a small batch size of 10K, the single ma-
chine strictly outperforms Flink. Right: Flink scales well
with large batch sizes of 1M and 10M, and outperforms the
single machine as it efficiently parallelizes updates of both
the history matrix and the cooccurrence matrix.

zero directly at the corresponding threshold. We repeat this experi-
ment for our distributed implementation in Flink and analogously
observe that the desired bounds hold in the resulting data.

6.4 Scalability
In this section, we investigate how our single machine and dis-
tributed implementations handle growing machine sizes (scale-up
of the single machine variant) or cluster sizes (scale-out of the
distributed variant). In all experiments, we fix the input size and
increase the number of cores and main memory. We apply our
implementations to the Twitter dataset with 27M interactions for
3M items, the Netflix dataset which has more than 100M interac-
tions for 17K items and to the Yahoo Music dataset which contains
approximately 700M interactions for 136K items. Our aim in these
experiments is not to benchmark the potential systems overhead of
a distributed system, but to explore use cases (in relation to the ap-
plied mini-batch size) where it is beneficial to move to a distributed
solution, which provides fault tolerance and elastic scaling of the
underlying hardware out-of-the-box. All experiments are executed
on virtual machines running on the Google Cloud Platform. Data is
consumed directly from Google Cloud Storage for the distributed
Flink experiments, and from the locally attached disk in the single
machine experiments. The cloud instances run debian-9, and we
use Rust 1.20 for the single machine implementation and Apache
Flink 1.3.2 with the HotSpot JVM 1.8.0_144 for the distributed cases.
Scaling with small mini-batches. In our first experiment, we
execute the incremental indicator computation with both Rust and
Flink on the Twitter andNetflix datasets.We leverage a n1-highcpu-64
instance with 64 cores for the single machine implementation and
a cluster of n1-standard-8 instances with 8 cores and 30GB of main
memory per machine for Flink. We apply a very small mini-batch
size: we partition the datasets into inputs of 10, 000 interactions
and have both variants consume these to incrementally update the
resulting indicators and cooccurrences. We repeat this computation
for setups of 8, 16, 32 and 64 cores and plot the resulting runtimes
in the left part of Figure 8. We see a strong speedup from 8 to 16
cores, which quickly flattens when further increase the number
of cores which we attribute to decreasing cache locality. In this
setup the single machine implementation always outperforms the
Flink implementation which has additional network communica-
tion overheads.
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Scaling with large mini-batches. We repeat the scaling experi-
ment for the Netflix and Yahoo Music data, and increase the batch
size by several orders of magnitude, e.g., we partition these datasets
into inputs of 1 million and 10 million interactions and run the incre-
mental indicator computation with 24, 48 and 96 cores. For the sin-
gle machine implementation, we leverage a n1-highcpu-96 instance
while we run the Flink experiments on cluster of custom-24-22272
instances with 24 cores and 22GB of memory each. The resulting
runtimes are shown in the rightmost plots of Figure 8. The runtimes
for the single machine implementation look similar to the previous
experiment, as we see a quickly flattening speedup for larger num-
bers of cores. However, the Flink implementation shows a different
behavior in this setup: It achieves better speedups than the single
machine implementation and manages to outperform the single
machine implementation by a factor of more than two for 96 cores,
despite of the overheads incurred by a distributed system. We at-
tribute this difference to the fact that the Flink implementation also
parallelizes the updates of the history matrix (which is executed
sequentially in the Rust code). This has a much higher impact on
the runtime for large batch sizes. We conclude from these findings
that our single machine implementation should be preferred for
use cases with small batch sizes which requires frequent updates; if
we encounter memory pressure or can live with larger batch sizes,
a distributed implementation becomes the preferred choice.

7 CONCLUSION
We have described and characterized an efficient, scalable algorithm
for incremental item-based collaborative filtering with cooccur-
rence analysis. We outlined generic scalability issues in item-based
recommenders and related these issues to well-known densifica-
tion processes in interaction datasets. Our approach deals with
these scalability issues by introducing interaction cuts and care-
fully choosing data structures for intermedate results to guarantee
a provably constant amount of work per interaction to process. We
described how to replace the common repeated offline recomputa-
tion of the model with an efficient online algorithm that updates
only the parts of the recommendation model which are affected
by new interactions. We have demonstrated the substantial bene-
fits of an efficient incremental algorithm, with both scale-up and
scale-out reference implementations. Finally, we conducted an ex-
perimental evaluation of our approach. Our results confirmed that
the incremental approach is dramatically faster than repeated batch
recomputation. We found that our implementation commonly out-
performs existing libraries by an order of magnitude or more on
many datasets, and scales well to medium-sized and large datasets
which some existing libraries fail to process. In future work, we
would like to investigate the incorporation of multiple interaction
types and optimizations based on thresholds for the LLR scores.
Another interesting direction is to focus on the serving part (par-
ticularly efficient updates) of recommendation systems.

We would like to thank Frank McSherry for advice on optimizing
the Rust implementation of our algorithm. This work was supported by
the Moore-Sloan Data Science Environment at New York University.

REFERENCES
[1] Jacob Abernethy, Kevin Canini, John Langford, and Alex Simma. 2007. Online

collaborative filtering. University of California at Berkeley, Tech. Rep.
[2] Xavier Amatriain. 2012. Building Industrial-scale Real-world Recommender

Systems. RecSys, 7–8.
[3] Xavier Amatriain. 2013. Mining large streams of user data for personalized

recommendations. SIGKDD 14, 2, 37–48.
[4] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. Science 286, 5439, 509–512.
[5] Robert M. Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge.

SIGKDD 9, 75–79.
[6] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas

Tzoumas. 2017. State management in Apache Flink®: consistent stateful dis-
tributed stream processing. PVLDB 10, 12, 1718–1729.

[7] Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F
Mokbel. 2011. StreamRec: a real-time recommender system. SIGMOD, 1243–1246.

[8] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. WWW,
271–280.

[9] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. 2010. The YouTube video recommendation system. RecSys, 293–296.

[10] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolfgang Nejdl.
2012. Real-time top-n recommendation in social streams. RecSys, 59–66.

[11] Ted Dunning. 1993. Accurate methods for the statistics of surprise and coinci-
dence. Computational Linguistics 19, 1, 61–74.

[12] Ted Dunning and Ellen Friedman. 2014. Practical Machine Learning: Innovations
in Recommendation. O’Reilly Media, Inc.

[13] Michael D Ekstrand, Michael Ludwig, Jack Kolb, and John T Riedl. 2011. LensKit:
a modular recommender framework. RecSys, 349–350.

[14] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. 2012.
Spinning fast iterative data flows. PVLDB 5, 11, 1268–1279.

[15] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. MyMediaLite: A Free Recommender System Library. RecSys.

[16] YanxiangHuang, Bin Cui,Wenyu Zhang, Jie Jiang, and Ying Xu. 2015. TencentRec:
Real-time Stream Recommendation in Practice. SIGMOD, 227–238.

[17] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks
meet the neighborhood for session-based recommendation. RecSys, 306–310.

[18] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8.

[19] Jérôme Kunegis, Ernesto De Luca, and Sahin Albayrak. 2010. The Link Prediction
Problem in Bipartite Networks. Computational Intelligence for Knowledge-Based
Systems Design, 380–389.

[20] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution:
Densification and Shrinking Diameters. TKDD 1, 1.

[21] Justin J Levandoski, Mohamed Sarwat, Mohamed F Mokbel, and Michael D
Ekstrand. 2012. RecStore: an extensible and adaptive framework for online
recommender queries inside the database engine. EDBT, 86–96.

[22] Nathan N Liu, Min Zhao, Evan Xiang, and Qiang Yang. 2010. Online evolutionary
collaborative filtering. RecSys, 95–102.

[23] John H McDonald. 2009. Handbook of biological statistics. Vol. 2.
[24] Sean M McNee, John Riedl, and Joseph A Konstan. 2006. Being accurate is not

enough: how accuracy metrics have hurt recommender systems. CHI, 1097–1101.
[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality.
NeurIPS, 3111–3119.

[26] Neoklis Polyzotis, Sudip Roy, Steven EuijongWhang, and Martin Zinkevich. 2018.
Data Lifecycle Challenges in Production Machine Learning: A Survey. ACM
SIGMOD Record 47, 2, 17–28.

[27] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. 2011. Recom-
mender Systems Handbook.

[28] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. WWW, 285–295.

[29] Mohamed Sarwat, James Avery, and Mohamed F Mokbel. 2013. RecDB in action:
recommendation made easy in relational databases. PVLDB 6, 12, 1242–1245.

[30] Mohamed Sarwat, Raha Moraffah, Mohamed F Mokbel, and James L Avery. 2017.
Database system support for personalized recommendation applications. ICDE,
1320–1331.

[31] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan
Seufert, and Gyuri Szarvas. 2018. On challenges in machine learning model
management. Data Engineering, 5.

[32] Sebastian Schelter, Christoph Boden, and Volker Markl. 2012. Scalable similarity-
based neighborhood methods with mapreduce. RecSys, 163–170.

[33] Sebastian Schelter, Venu Satuluri, and Reza Zadeh. 2014. Factorbird-a parameter
server approach to distributed matrix factorization. Distributed Machine Learning
and Matrix Computations workshop at NeurIPS.


	Abstract
	1 Introduction
	2 Background
	3 Algorithm
	3.1 Scalability Issues
	3.2 Power Law Patterns in Interaction Data
	3.3 Incremental Cooccurrence Analysis

	4 Implementation
	4.1 Single Machine
	4.2 Stateful Stream Processor

	5 Related Work
	6 Experimental Evaluation
	6.1 Benefits of Incrementalized Computation
	6.2 Comparison Against Existing Item-Based Recommenders
	6.3 Enforcing Interaction Cuts
	6.4 Scalability

	7 Conclusion
	References

