
Unit Testing Data with Deequ
Sebastian Schelter, Felix Biessmann, Dustin Lange, Tammo Rukat,

Philipp Schmidt, Stephan Seufert, Pierre Brunelle, Andrey Taptunov
Amazon Research

{sseb,biessman,langed,tammruka,phschmid,seufert,brunep,taptunov}@amazon.com

ABSTRACT
Modern companies and institutions rely on data to guide
every single decision. Missing or incorrect information seri-
ously compromises any decision process. We demonstrate
Deequ, an Apache Spark-based library for automating the
verification of data quality at scale. This library provides a
declarative API, which combines common quality constraints
with user-defined validation code, and thereby enables unit
tests for data. Deequ is available as open source, meets the re-
quirements of production use cases at Amazon, and scales to
datasets with billions of records if the constraints to evaluate
are chosen carefully.
Our demonstration walks attendees through a fictitious

business use case of validating daily product reviews from a
public dataset, and is executed in a proprietary interactive
notebook environment. We show attendees how to define
data unit tests from automatically suggested constraints and
how to create customized tests. Additionally, we demon-
strate how to apply Deequ to validate incrementally growing
datasets, and give examples of how to configure anomaly
detection algorithms on time series of data quality metrics
to further automate the data validation.

ACM Reference Format:
Sebastian Schelter, Felix Biessmann, Dustin Lange, Tammo Rukat,,
Philipp Schmidt, Stephan Seufert, Pierre Brunelle, Andrey Tap-
tunov. 2019. Unit Testing Data with Deequ. In 2019 International
Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3299869.3320210

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320210

1 INTRODUCTION
Data is at the center of modern enterprises and institutions.
Online retailers, for example, rely on data to support cus-
tomers making buying decisions, to forecast demand [2], to
schedule deliveries. Missing or incorrect information seri-
ously compromises any decision process downstream, ul-
timately damaging the overall effectiveness and efficiency
of the organization. The quality of data has effects across
teams and organizational boundaries. Furthermore, there is a
trend across different industries towards more automation of
business processes with machine learning (ML) techniques,
which also introduces novel data validation problems [4, 5, 8].
In modern information infrastructures, data lives in many
different places (e.g., in relational databases, in ‘data lakes’ on
distributed file systems, behind REST APIs, etc.), and comes
in many different formats. Many such data sources do not
support integrity contraints, and often there is not even an
accompanying schema available. Due to these circumstances,
every team and system involved in data processing has to
take care of data validation in some way, which often results
in tedious and repetitive work.

In order to address these challenges, we recently proposed
Deequ1, an open-source library for automating the verifica-
tion of data quality at scale [6] with Apache Spark. Deequ
provides a declarative API, which combines common quality
constraints with user-defined validation code, and thereby
enables unit tests for data. It allows users to explicitly and
declaratively state their expectations about the data which
they consume or produce. Furthermore, Deequ allows users
to automate the data validation process by integrating the
tests into data pipelines. In case of violations, data can be
quarantined and data engineers can be automatically noti-
fied. We demonstrate Deequ using an interactive notebook
environment, and walk attendees through a retail use case of
validating daily product reviews. We focus on the following
tasks:
• Definition of customized data unit tests from automati-
cally suggested constraints.
• Data validation on incrementally growing datasets.
• Configuration of anomaly detection algorithms on time
series of data quality metrics.

1https://github.com/awslabs/deequ

Demonstration  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1993

https://doi.org/10.1145/3299869.3320210
https://doi.org/10.1145/3299869.3320210
https://github.com/awslabs/deequ


Anomaly 
Detection

Query Generation &
State Management

Metrics Repository

Constraints API

R
u

n
tim

e
    Te st
D

e fi
n

i tio n

State Store

Metrics

Figure 1: Architecture of Deequ.

2 OVERVIEW OF DEEQU
We give a brief overview over Deequ. Interested readers can
find more details in our recent publications [6, 7] and on the
project homepage at https://github.com/awslabs/deequ.
Execution of data validating tests. Deequ’s architecture
is shown in Figure 1. Given a data unit test specified with its
declarative API, Deequ inspects the constraints to validate,
and identifies the data metrics required for evaluation. Next,
it generates queries in SparkSQL [1] with custom designed
aggregation functions in order to compute the statistics. For
performance reasons, it applies multi-query optimization to
enable scan-sharing for the aggregation queries in order to
reduce the number of required passes over the input data.
Once the data statistics are computed, Deequ invokes the
user-defined validation functions contained in the test code
and returns the evaluation results to the user. Additionally,
it supports efficient constraint evaluation on changing data
(e.g., incrementally growing logs) with a specialized imple-
mentation of incremental view maintenance for data quality
metrics. This implementation stores mergeable sufficient sta-
tistics per data partition which enable the cheap computation
of quality metrics from different combinations of partitions.
Constraint suggestion and anomaly detection. Deequ
contains several advanced features which we will also show-
case during the demonstration. The benefits of our library
to users heavily depend on the richness and specificity of
the constraints, which the users define. Therefore, we aim to
make the adoption process as simple as possible and provide
machinery to automatically suggest constraints and identify
data types for datasets. Deequ applies scalable single-column
profiling [3], and feeds the resulting profiles into rule-base
constraint generators, which for example inspect the ratio
of missing values or estimates of the cardinality of a column.
In some cases, it might be difficult to define exact thresholds
for constraints on certain data statistics, as these statistics
might be subject to regular changes, e.g., due to weekly sea-
sonality patterns. Deequ therefore allows its users to record
a time series of data quality metrics and configure anomaly
detection algorithms that supply sensible thresholds learnt
from past data quality metrics for newly arriving data.

3 DEMO SCENARIO
We describe the scenario and setup of the demonstration, and
give an overview over the individual steps through which
we will walk the attendees.
Product reviews use case. We exemplify Deequ on a ficti-
tious use case from the retail domain, for which we leverage
a sample of the Amazon Reviews Dataset2, a publicly avail-
able dataset of product reviews. We assume that our task
is to ingest a batch of new product reviews every day. As
part of this ingestion, we need to validate the data quality of
the new batch, to make sure it can safely be consumed by
downstream systems.
Setup. We use Apache Spark for our data pipeline and in-
gest the review data in the form of CSV files located in the
distributed file system S3. We execute the demonstration in
a custom proprietary notebook environment (shown in Fig-
ure 2), which allows us to run Scala-based Spark jobs as well
as Python-based data analysis on data residing in S3. We
will walk attendees through various example notebooks that
implement different stages of our use case. The notebook
environment allows us to interactively execute the code in
front of the attendees and incorporate their feedback in the
form of code changes.
Automated constraint suggestion. We assume that our
input data comes in the form of CSV files without machine-
readable schema information other than column names. In
such cases, our tests should validate the consistency of data
types, value ranges and absence of missing values in the
data. Deequ aims to automate the definition of such simple
constraints as much as possible. For that, we load a sample of
the data (e.g., the reviews from a particular day) and ask our
library to generate suggestions for constraints using a set
of predefined rules. A rule might for example compare the
number of rows in the sample to a sketch-based estimate of
the cardinality of a column, and suggest a unique constraint
if these are close. Deequ additionally allows us to hold out
a random portion of the data, on which it will evaluate the
suggested constraints. Deequ outputs suggestions for all the
columns of the dataset, both in human-readable form and in
the form of Scala code that can be copied and pasted. Addi-
tionally, it provides the information whether the suggested
constraint was satisfied on the held-out data, e.g.:
'review_headline' has less than 1% missing values
(satisfied on holdout set)
Code: .hasCompleteness("review_headline", _ >= 0.99)

'product_id' is unique
(failed on holdout set, uniqueness was 0.918)
Code: .isUnique("product_id")

2https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Demonstration  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1994

https://github.com/awslabs/deequ
https://s3.amazonaws.com/amazon-reviews-pds/readme.html


Figure 2: The demo will be executed in an interactive notebook environment using Apache Spark, Python data
visualization tools and a sample of the public Amazon reviews dataset.

Definition of the data unit test. Based on the outputs from
the constraint suggestion, we can now start to define our
data unit test to run on the review data. The constraint sug-
gestions are often leveraged for a data exploration, and users
later decide whether to adopt them or not (usually the infor-
mation whether the constraints held on the test data or not is
crucial here). This typically results in a set of simple integrity
constraints that concentrate on completeness, data types and
value ranges. In our case, we would for example require that
the column customer_id is never null and contains integer
values only, that the column product_category only con-
tains strings from a predefined set of values and that at least
99% of values in the vine column have a particular value:

Check(Level.Error)

.isComplete("customer_id")

.hasDataType("customer_id", Integral)

.isComplete("product_category")

.isContainedIn("product_category",

Array("Beauty", "Shoes", "Jewelry"))

.isContainedIn("vine", Array("N"), _ >= 0.99)

.isNonNegative("total_votes")

...

We designed the constraint suggestion rules in a conserva-
tive way with the goal to produce a low number of false pos-
itives (in order to reduce false alarms if users decide to only
apply the automatically suggested constraints). Therefore,
users with a deeper understanding of the data typically start
with the suggested constraints and add custom handcrafted
constraints. Typically these constraints define thresholds
on aggregates over the data, and often leverage sketch data

structures that can be computed quickly at scale. In our ex-
ample, we define some advanced constraints, e.g., we require
that there are no credit card numbers present in reviews, and
we define the expected range of the (approximate) median
and mean of the star_rating column:
Check(Level.Error)

.containsCreditCardNumber("review_body", NEVER)

.hasApproxQuantile("star_rating", 0.5, _ >= 4.0)

.hasMean("star_rating", { meanRating =>

meanRating > 3.5 && meanRating < 5.0 })

Finally, we show custom validation logic that is enabled
by our decision to allow for arbitrary user-defined validation
code. We assume that the reviews are a denormalized copy
from another data source (which is often the case in complex
industry data pipelines), and that we can ask this data source
about “ground truth” properties of the data. We imagine
that there is an external ProductService (e.g., invokable
via a REST API) which allows us to retrieve the number of
distinct available products in a certain product category on a
given day. Due to the flexibility of Deequ, we can write code
that contacts this service during the validation and verifies
that the statistics observed in the data (e.g., the approximate
cardinality of the product_id column) are consistent with
the ground truth returned by the service.
Check(Level.Error)

.hasApproxCountDistinct("product_id", { count =>

val expected = ProductService

.numAvailableProducts(day , "Beauty")

count <= 1.15 * expected })

.where("product_category = 'Beauty '")

Demonstration  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1995



Figure 3: Visualization of a time series of data quality
metrics exhibiting weekly seasonality.

After having defined the data unit tests, we will execute
them on different parts of the reviews dataset and show to
attendees how to inspect the validation results in the form of
Spark dataframes that summarize datametrics and constraint
results.
Anomaly detection on data quality metrics. Most of the
constraints presented so far comprise of thresholds on sta-
tistics of the data. There might be cases however, where it is
difficult to define such thresholds because the distribution of
certain statistics is not stationary, but subject to seasonality
patterns. Figure 3 highlights such a case, when we compute
the time series of the number of reviews for beauty products
in our data, which exhibits a weekly seasonality pattern. We
demonstrate how to handle such cases with Deequ. Users
can record the time series of data statistics and leverage
several predefined anomaly detection algorithms [9] to de-
cide whether the metric observed in a new batch is to be
considered anomalous or not.
Check(Level.Warning)

.usingRepository(repository)

.isNonAnomalous(Size(),

algorithm = HoltWinters(seasonality = Weekly ))

.isNonAnomalous(Mean("total_votes"),

algorithm = OnlineNormal ())

We showcase this technique by training an anomaly detec-
tion model and using it to catch manually introduced errors
in new data.
Handling growing datasets. In the final part of the demo,
we show how to configure Deequ to compute and validate
data metrics repeatedly on growing datasets. In our example,

the reviews dataset grows by daily batches and we do not
want to have to re-scan all the data each day for evaluating
constraints on the dataset as a whole. In that case, our library
provides a simple abstraction that allows users to record
sufficient statistics for data partitions that can be merged
with statistics ofnewly ingested data to avoid having to re-
read historic data during the re-execution of tests.

4 INTERACTIVITY
Our demonstration will be executed in a notebook environ-
ment, which allows for a high amount of interaction with
attendees, as they will be able to suggest changes to the code
which we can evaluate “on the fly”. Attendees can for ex-
ample ask us to try different rules for constraint suggestion,
they can propose custom constraints to evaluate on the data,
and they can suggest different errors to introduce in the data
and find out whether the data unit tests catch these errors.

REFERENCES
[1] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,
Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark.
SIGMOD (2015), 1383–1394.

[2] Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski,
Dustin Lange, David Salinas, Sebastian Schelter, Matthias Seeger, and
Yuyang Wang. 2017. Probabilistic demand forecasting at scale. PVLDB
10, 12 (2017), 1694–1705.

[3] Joseph M Hellerstein. 2008. Quantitative data cleaning for large
databases. United Nations Economic Commission for Europe (2008).

[4] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinke-
vich. 2017. Data Management Challenges in Production Machine Learn-
ing. SIGMOD (2017), 1723–1726.

[5] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas,
Stephan Seufert, Gyuri Szarvas, et al. 2018. On Challenges in Machine
Learning Model Management. IEEE Data Engineering Bulletin (2018).

[6] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix
Biessmann, and Andreas Grafberger. 2018. Automating Large-Scale
Data Quality Verification. PVLDB 11, 12 (2018).

[7] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix
Biessmann, and Andreas Grafberger. 2019. Differential Data Quality
Verification on Partitioned Data. ICDE (2019).

[8] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo,
and Dan Dennison. 2015. Hidden technical debt in machine learning
systems. NeurIPS (2015), 2503–2511.

[9] Peter R Winters. 1960. Forecasting sales by exponentially weighted
moving averages. Management science 6, 3 (1960), 324–342.

Demonstration  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1996


	Abstract
	1 Introduction
	2 Overview of Deequ
	3 Demo Scenario
	4 Interactivity
	References



