
Serenade - Low-Latency Session-Based Recommendation
in e-Commerce at Scale

Barrie Kersbergen
bkersbergen@bol.com

bol.com

Olivier Sprangers
o.r.sprangers@uva.nl

AIRLab, University of Amsterdam

Sebastian Schelter
s.schelter@uva.nl

University of Amsterdam

ABSTRACT
Session-based recommendation predicts the next item with which
a user will interact, given a sequence of her past interactions with
other items. This machine learning problem targets a core sce-
nario in e-commerce platforms, which aim to recommend interest-
ing items to buy to users browsing the site. Session-based recom-
menders are difficult to scale due to their exponentially large input
space of potential sessions. This impedes offline precomputation of
the recommendations, and implies the necessity to maintain state
during the online computation of next-item recommendations.

We propose VMIS-kNN, an adaptation of a state-of-the-art near-
est neighbor approach to session-based recommendation, which
leverages a prebuilt index to compute next-item recommendations
with low latency in scenarios with hundreds of millions of clicks to
search through. Based on this approach, we design and implement
the scalable session-based recommender system Serenade, which
is in production usage at bol.com, a large European e-commerce
platform.

We evaluate the predictive performance of VMIS-kNN, and show
that Serenade can answer a thousand recommendation requests per
secondwith a 90th percentile latency of less than sevenmilliseconds
in scenarios with millions of items to recommend. Furthermore, we
present results from a three week long online A/B test with up to
600 requests per second for 6.5 million distinct items on more than
45 million user sessions from our e-commerce platform. To the best
of our knowledge, we provide the first empirical evidence that the
superior predictive performance of nearest neighbor approaches to
session-based recommendation in offline evaluations translates to
superior performance in a real world e-commerce setting.
ACM Reference Format:
Barrie Kersbergen, Olivier Sprangers, and Sebastian Schelter. 2022. Ser-
enade - Low-Latency Session-Based Recommendation in e-Commerce
at Scale. In Proceedings of the 2022 International Conference on Manage-
ment of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3514221.3517901

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517901

1 INTRODUCTION
Session-based recommendation targets a core scenario in e-commerce
and online browsing. Given a sequence of interactions of a visitor
with a selection of items, we want to recommend to the user the
next item(s) of interest to interact with [27, 29, 30, 37]. This machine
learning problem is crucial for e-commerce platforms [24].
Challenges in scaling session-based recommendation. Scal-
ing session-based recommender systems is a difficult undertaking,
because the input space (sequences of item interactions) for the
recommender system is exponentially large (of size |I|𝑛 for all pos-
sible sessions of length 𝑛 from a set of items 𝐼), which renders it
impractical to precompute recommendations offline and serve them
from a data store. This is in stark contrast to classical collaborative-
filtering based recommendations [25, 39], which are relatively static
as they rely on long-term user behavior [40]. Instead, session-based
recommenders have to maintain state in order to react to online
changes in the evolving user sessions, and compute next item rec-
ommendations with low latency [9, 24] in real-time.

Recent research indicates that nearest neighbor methods provide
state-of-the-art performance for session-based recommendation,
and even outperform complex neural network-based approaches
in offline evaluations [24, 30]. It is however unclear whether this
superior offline performance also translates to increased user en-
gagement in real-world recommender systems. Furthermore, it is
unclear whether the academic nearest neighbor approaches scale to
industrial use cases, where they have to efficiently search through
hundreds of millions of historical clicks while adhering to strict
service-level-agreements for response latency. This scalability chal-
lenge is further complicated by the fact that the applied session
similarity functions do not constitute a metric space (e.g., due to
lack of symmetry), which renders common approximate nearest
neighbor search techniques inapplicable.
VMIS-kNN. In order to tackle the scalability challenge, we present
Vector-Multiplication-Indexed-Session-kNN (VMIS-kNN) in Section 3,
an adaption of the state-of-the-art session-based recommendation
algorithm VS-kNN [30]. VMIS-kNN leverages a prebuilt index to
compute next-item recommendations in milliseconds for scenarios
with hundreds of millions of clicks in historical sessions to search
through. Our approach can be viewed as the joint execution of a
join between evolving and historical sessions on matching items
and two aggregations to compute the similarities. During this joint
execution, we minimise intermediate results, control the memory
usage and prune the search space with early stopping. As a con-
sequence, VMIS-kNN drastically outperforms VS-kNN in terms
of latency and scalability (Section 5.2.1), while still providing the
desired prediction quality advantages over neural network-based
approaches (Section 5.1.1).

https://doi.org/10.1145/3514221.3517901
https://doi.org/10.1145/3514221.3517901

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

Serenade. Finally, we present the design and implementation of
our scalable session-based recommender system Serenade, which
employs VMIS-kNN, and can serve a thousand recommendation
requests per second with a 90th percentile latency of less than
seven milliseconds in scenarios with millions of items to recom-
mend. Our system runs in the Google Cloud-based infrastructure
of bol.com, a large European e-commerce platform, and is in pro-
duction usage. We discuss design decisions of Serenade, such as
stateful recommendation servers, which colocate the evolving user
sessions together with update and recommendation requests (Sec-
tion 4.1). Additionally, we describe implementation and deployment
details (Section 4.2), as well as insights into the remarkably low
operational costs for our system (Section 7).
Offline and online evaluation. We conduct an extensive eval-
uation to validate the predictive performance and low latency of
VMIS-kNN in Section 5.1. For the Serenade system, we present re-
sults from a load test with more than 1,000 requests per second, and
the outcome of a three week long online A/B test of our system on
the live e-commerce platform in Section 5.2. Our system is available
under an open license at https://github.com/bolcom/serenade.
In summary, we provide the following contributions.

• We present VMIS-kNN, an index-based variant of a state-of-the-
art nearest neighbor algorithm to session-based recommendation,
which scales to use cases with hundreds of millions of clicks to
search through (Section 3).
• We discuss design decisions and implementation details of our
production recommender system Serenade, which applies stateful
session-based recommendation with VMIS-kNN, and can handle
more than 1,000 requests per second with a response latency of
less than seven milliseconds in the 90th percentile (Section 4).
• To the best of our knowledge, we provide the first empirical evi-
dence that the superior predictive performance of VMIS-kNN/VS-
kNN from offline evaluations translates to superior performance
in a real world e-commerce setting; we find Serenade to drasti-
cally increase a business-specific engagement metric by several
percent, compared to our legacy system (Section 5.2.3).

2 BACKGROUND
We introduce session-based recommendation and the Vector-Session-
kNN method. Given an evolving session (a sequence of interactions
with a set of items I) at time 𝑡 , the goal of session-based recom-
mendation is to accurately predict the next item that the user will
interact with at time 𝑡 + 1.
Vector-Session-kNN. Vector-Session kNN (VS-kNN) [30] is a
state-of-the-art nearest neighbor based approach to session-based
recommendation, which outperforms current deep learning ap-
proaches for this task. In VS-kNN, we have a set of historical ses-
sions H ∈ {0, 1} |I | represented as binary vectors in item space,
and an evolving user session s(𝑡) ∈ {0, 1} |I | at time 𝑡 , as well as a
function 𝜔 (s) which replaces the non-zero entries of s with inte-
gers denoting the insertion order of the items in s(𝑡) . Algorithm 1
describes how VS-kNN computes its recommendations for an evolv-
ing session s(𝑡) . First a recency-based sample H𝑠 of size𝑚 is taken
from all historical sessions H𝑠 that share at least one item with

Algorithm 1 Vector-Session-kNN.
1: function vs-knn(s(𝑡) ,H, 𝜋, _,𝑚,𝑘)
2: Input: Evolving session s(𝑡) , set of historical sessions H, decay function 𝜋 ,
3: match weight function _, sample size𝑚, number of neighbors 𝑘 .
4: Output: Scored list of recommended next items d.
5: H𝑠 ← historical sessions that share at least one item with s
6: H𝑠 ← recency-based sample of size𝑚 from H𝑠

7: N𝑠 ← 𝑘 closest sessions h ∈ H𝑠 according to similarity 𝜋 (𝜔 (s(𝑡)))⊤h
8: for each item 𝑖 occuring in the sessions N𝑠 do
9: 𝑑𝑖 ←

∑
n∈N𝑠

1𝑛 (𝑖) · 1
|s(𝑡) |

· _ (max(𝜔 (s(𝑡)) ⊙ n)) ·

𝜋 (𝜔 (s(𝑡)))⊤n · (1 + log |𝐻 |
ℎ𝑖
)

return item scores d

the evolving session (Lines 5 & 6). Next, we compute the 𝑘 clos-
est sessions N𝑠 from H𝑠 according to the similarity 𝜋 (𝜔 (s(𝑡)))⊤h
(Line 7), which applies an element-wise decay function 𝜋 to the
entries denoting the insertion order in the evolving session. All
items occurring in these neighboring sessions are finally scored
(Lines 8 & 9) by summing their similarities (the previously com-
puted decayed dot product) weighted by a non-linear function _

applied to the position max(𝜔 (s(𝑡)) ⊙ n) of the most recent shared
item between the evolving session s(𝑡) and the neighbor session n.
The session similarity contribution is additionally weighted by a
factor of one over the session length, and by a factor of one plus the
“inverse document frequency” log |𝐻 |

ℎ𝑖
of the item, where ℎ𝑖 denotes

the number of historical sessions containing item 𝑖 (a common tech-
nique from information retrieval to de-emphasise highly frequent
items). Note that the indicator function 1𝑛 (𝑖) is one if item 𝑖 occurs
in the historical session n and zero otherwise.
Toy example. We provide a toy example for the session similarity
and match weighting computation executed by VS-kNN. Assume
that we have an evolving session s(𝑡) = [0 1 1 0 1] representing
interactions with the three items [1,2,4] and a historical session
h = [0 0 1 0 1] representing interaction with the items [2,4]. The
function 𝜔 gives us the chronological insertion order for the evolv-
ing session, e.g., 𝜔 (s(𝑡)) = [0 1 2 0 3] of the items in s(𝑡) , starting
from the first item (item 1 with insertion time 1) to the most recent
item (item 4 with insertion time 3). The insertion order is used
to weight matches between the items of the evolving session and
the historical session, and the weights are determined by the de-
cay function 𝜋 , which is a hyperparameter of VS-kNN. A common
choice for 𝜋 is to divide the insertion time by the session length,
e.g., 𝜋 (𝜔 (s(𝑡))𝑖) = 𝜔 (s(𝑡))𝑖 / | |s(𝑡) | |1. The similarity is finally de-
termined by computing the decayed dot product 𝜋 (𝜔 (s(𝑡)))⊤h be-
tween the evolving session s(𝑡) and historical session h as the sum of
the decayed weights for the intersection of the sessions (the shared
items), e.g., 𝜋 (𝜔 (s(𝑡)))⊤h = [0 1

3
2
3 0 3

3]
⊤ [0 0 1 0 1] = 2

3 +
3
3 = 5

3 .
After finishing the session similarity computation, VS-kNN com-

putes item scores from the similarities (Lines 8 & 9). The score
for an item is the weighted sum of similarities with s(𝑡) from the
𝑘 closest historical sessions n ∈ N𝑠 in which the item occurs.
The weights for this sum are computed by the matching func-
tion _, which is applied to the insertion time max(𝜔 (s(𝑡)) ⊙ n)
of the most recent shared item between s(𝑡) and n. The default

https://github.com/bolcom/serenade

Serenade - Low-Latency Session-Based Recommendation in e-Commerce at Scale SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

choice for _ in VS-kNN is 1 − (0.1 · (max(𝜔 (s(𝑡)) ⊙ n))) for in-
sertion times less than 10 and zero otherwise. For our toy exam-
ple, the contribution of the matching function for h looks as fol-
lows: _(max(𝜔 (s(𝑡)) ⊙ h)) = _(max([0 1 2 0 3] ⊙ [0 0 1 0 1])) =
_(max([0 0 2 0 3])) = _(3) = 0.7.

3 VECTOR-MULTIPLICATION-INDEXED-
SESSION-KNN (VMIS-KNN)

In the following, we present our scalable, index-based adaption of
VS-kNN, which we call Vector-Multiplication-Indexed-Session-kNN
(VMIS-kNN).

VMIS-kNN operates on an index structure (M, t), which we build
from a large dataset of historical sessions. We create a hash index
M from an item 𝑖 to an array m𝑖 of the𝑚 most recent historical
sessions in which the item occurs. Note that𝑚 is a hyperparameter
of VMIS-kNN, which denotes the size of the recency-based sample
from which session similarity candidates are taken. Each array m𝑖

of session identifiers for an item 𝑖 is stored in descending timestamp
order of the sessions (i.e., the most recent historical session ℎ that
contained the item 𝑖 is the first entry in the vector m𝑖). The key
benefit of this data structure is to allow us amortised constant-time
access to the𝑚 most recent sessions containing an item.

Furthermore, we maintain an array t where an entry 𝑡ℎ denotes
the integer timestamp for a historical session ℎ. This again provides
constant time random access during the online computation of the
session similarity score across all the items in an evolving session,
as we use consecutive integer identifiers for historical sessions.
Algorithm 2 describes the individual steps and data structures that
VMIS-kNN leverages for efficient session-based recommendation
based on our index data structure.
Index-based session similarity computation. At the heart of
VMIS-kNN is the efficient computation of the neighbor sessions N𝑠

for an evolving session s(𝑡) using our previously introduced index
structure (M, t) in the function neighbor_sessions_from_index in
Line 8.

We first initialize a set of temporary hashmaps and heaps (Line 11)
which serve as buffers for intermediate results during the compu-
tation. Next, VMIS-kNN starts the item intersection loop, which
iterates over the items in an evolving session s(𝑡) in reverse or-
der (Line 12). Our approach processes an evolving session s(𝑡) in
inverse insertion order, such that the most recent (and therefore
most important) items of an evolving session are visited first. We
then add the item identifier 𝑖 to the temporary hashset d, such that
duplicate items in the evolving session can be skipped (Lines 13-14).
Next, we look up the item in our inverted index M to obtain the
vector m𝑖 containing up to𝑚 historical session identifiers (Line 15).
We then compute the decay score 𝜋𝑖 based on the item’s position
in the evolving session (Line 16).

Now, we start a loop over each historical session 𝑗 inm𝑖 (Line 17).
If we have already encountered this historical session for a different
item, we add the current decay score 𝜋𝑖 to the session score 𝑟 𝑗
(Line 18). However, if the historical session is not yet part of our
temporary similarity score hashmap r, we first obtain the timestamp
𝑡 𝑗 of the historical session (Line 20). If our temporary similarity
score hashmap r contains less than𝑚 items, we insert the session
identifier 𝑗 and session similarity score 𝑟 𝑗 as (key, value)-pair into r,

Algorithm 2 Vector-Multiplication-Indexed-Session-kNN.
1: function vmis-knn(s(𝑡) , (M, t), 𝜋, _,𝑚,𝑘)
2: Input: Evolving session s(𝑡) , session similarity index (M, t), decay function 𝜋 ,
3: sample size𝑚, match weight function _, number of neighbors 𝑘 .
4: Output: Scored list of recommended next items d.

5: (N𝑠 , r) ← neighbor_sessions_from_index(s(𝑡) , (M, t), 𝜋,𝑚,𝑘)
6: for each item 𝑖 occuring in the sessions N𝑠 do
7: 𝑑𝑖 ←

∑
n∈N𝑠 1𝑛 (𝑖) · _ (max(𝜔 (s(𝑡)) ⊙ n)) · 𝑟𝑛 · log |𝐻 |ℎ𝑖

return item scores d

8: function neighbor_sessions_from_index(s(𝑡) , (M, t), 𝜋,𝑚,𝑘)
9: initialize hashmap r for temporary similarity scores, min-heap b𝑡 of cap-
10: acity𝑚 for the most recent similar historical sessions, hashset d for already
11: processed items, max-heap N𝑠 of capacity 𝑘 for closest sessions
12: for item 𝑖 ∈ s(𝑡) in reverse insertion order do ⊲ Item intersection loop
13: if 𝑖 ∉ d then
14: insert 𝑖 into d
15: m𝑖 ← most recent sessions for item 𝑖 from inverted indexM
16: 𝜋𝑖 ← decay weight 𝜋 (𝜔 (s(𝑡)))𝑖 of item 𝑖 in session s(𝑡)
17: for session 𝑗 ∈ m𝑖 do
18: if 𝑗 ∈ keys(r) then 𝑟 𝑗 ← 𝑟 𝑗 + 𝜋𝑖
19: else
20: 𝑡 𝑗 ← timestamp of session 𝑗 fetched from index t
21: if |r | <𝑚 then
22: 𝑟 𝑗 ← 𝜋𝑖
23: insert (𝑗, 𝑟 𝑗) into r
24: insert (𝑗, 𝑡 𝑗) into b𝑡
25: else
26: (𝑙, 𝑡𝑙) ← current heap root of b𝑡
27: if 𝑡 𝑗 > 𝑡𝑙 then
28: 𝑟 𝑗 ← 𝜋𝑖
29: remove (𝑙, 𝑟𝑙) from r
30: insert (𝑗, 𝑟 𝑗) into r
31: update heap root of b𝑡 with (𝑗, 𝑡 𝑗)
32: else break

33: for (𝑗, 𝑟 𝑗) ∈ r do ⊲ Top-k similarity loop
34: if |N𝑠 | < 𝑘 then insert (𝑗, 𝑟 𝑗) into N𝑠

35: else
36: (𝑛, 𝑟𝑛) ← current heap root of N𝑠

37: if 𝑟 𝑗 > 𝑟𝑛 then update heap root of N𝑠 with (𝑗, 𝑟 𝑗)
38: else if 𝑟 𝑗 = 𝑟𝑛 and 𝑡 𝑗 > 𝑡𝑛 then update heap root of N𝑠 with (𝑗, 𝑟 𝑗)
39: return N𝑠

and we insert the session identifier 𝑗 and session timestamp 𝑡 𝑗 as
(key, value)-pair into a min-heap b𝑡 (Lines 21-24). If our temporary
similarity score hashmap r already contains𝑚 sessions, we need
to investigate whether to remove the oldest session. Therefore, we
first retrieve the oldest session and corresponding timestamp from
the heap b𝑡 (Line 26).

If the current historical session 𝑗 is more recent than the oldest
session, we need to remove the oldest session from our temporary
similarity score hashmap r and heap b𝑡 , and update both with the
values from the current historical session 𝑗 (Lines 27-31). Finally,
we extract the top-𝑘 scored sessions from the max-heap N𝑠 in the
top-k similarity loop and return them (Line 33).

VMIS-kNN computes the final item scores by using the pre-
computed session similarity 𝑟𝑛 for a neighboring historical session n.
We however simplify the item scoring function from Line 9 of Al-
gorithm 1 in two ways: (𝑖) we remove the constant factor 1/ |s(𝑡) |
applied to each similarity (which does not change the neighbor
ranking); and (𝑖𝑖) we use a weight of log |𝐻 |

ℎ𝑖
instead of (1 + log |𝐻 |

ℎ𝑖
)

for the similarities, which gives us better results in offline evalua-
tions on held-out data.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

A particular advantage of VMIS-kNN is its support for early
stopping, which allows us to skip certain historical sessions during
the similarity computation: we can immediately break the session
for-loop if our current historical session 𝑗 is older than the eldest
session 𝑙 in our heap b𝑡 as m𝑖 is already sorted in descending
timestamp order, and will not contain more recent sessions in later
positions (Line 32).
Time complexity. The time complexity of the online computation
of our similarity score is dominated by the linear time required
to execute the three for-loops (Lines 12, 17 and 33) and the log-
arithmic time required to modify the heaps b𝑡 (Lines 24, 31) and
N𝑠 (Lines 34, 37, 38), yielding a theoretical time complexity of
𝑂 (|s(𝑡) | ·𝑚 · log2𝑚 +𝑚 · log2 𝑘) = 𝑂 (|s(𝑡) | ·𝑚 · log2𝑚) as 𝑘 ≤ 𝑚.
Thus, the time complexity only depends on: (i) the number of items
in the evolving session s(𝑡) , which we cap at a maximum value, and
(ii) the number𝑚 denoting how many recent historical sessions
to consider. Hence, the time complexity of our implementation is
(theoretically) independent of the number of historical sessions
|H| and the number of unique items |I| in our dataset. As a micro-
optimisation, we leverage octonary heaps [2] instead of binary
heaps, which have more children per node, and therefore provide
better performance for workloads like ours with frequent insertions.
Space complexity. The space complexity of the index for VMIS-kNN
is dominated by the storage cost𝑂 (|I| ·𝑚) for the hashmap holding
the inverted index M, which maps unique item indices to the𝑚
most recent historical sessions containing the item.

From a classical query processing perspective, VMIS-kNN con-
ducts two aggregations (identifying the 𝑚 most recent sessions
with an item match, and computing their similarities) on the result
of a join between the items of the evolving session s(𝑡) and the
historical sessions H. The efficiency of VMIS-kNN derives from the
fact that we jointly execute the join and subsequent aggregations
in Algorithm 2, while only maintaining intermediate results of a
size proportional to the final outputs (instead of first materialis-
ing the potentially large complete join result before running the
aggregations).

4 SERENADE
We present the design and implementation of our scalable recom-
mender system Serenade, which leverages VMIS-kNN (Section 3)
and provides recommendations on the product detail pages of
bol.com.

4.1 Design Considerations
At the core of the design of our production system are two questions:
(𝑖) How to maintain the session similarity index over time; and
(𝑖𝑖) How to efficiently serve next-item recommendations with low
latency?
Index maintenance. We execute the index computation in an
offline manner once per day with a data-parallel implementation
of the relational operations required for the index generation. This
batch job is easy to schedule and scale; note that Serenade will thus
only see sessions for new items on the platform with a delay of
one day. This “cold-start” issue is no problem in practice however,

because our e-commerce platform has a separate, specialised system
for presenting new and trending items to users.
Low latency serving of next-item recommendations. The
biggest challenge in our system is to serve session-based recom-
mendations with a low latency for a catalog containing millions
of items (our business constraint is to respond in 50 ms or less for
at least 90% of all requests). As discussed in Section 1, we cannot
precompute the recommendations due to the exponentially large
input space of potential sessions, and we cannot apply approximate
nearest neighor search techniques because our similarity function is
not a metric. As a consequence, our recommendation servers have
to be stateful, by maintaining copies of the evolving sessions, to be
able to compute recommendations online on request. We decide
to replicate our session index to all recommendation servers, and
colocate the session storage with the update and recommendation
requests, so that we only have to use machine-local reads and writes
for maintaining sessions and computing recommendations. Note
that similar techniques are often used to accelerate joins [16].

4.2 Implementation
The high-level architecture of Serenade (derived from our design
decisions in Section 4.1) is illustrated in Figure 1. Serenade consists
of two components: The offline component (shown in the left part
of the figure) builds the session index from click data and is imple-
mented as an Apache Spark pipeline. The online component (shown
in the right part of the figure) computes and serves session-based
recommendations with VMIS-kNN, and is implemented as a REST
application. Note that Serenade builds upon existing Google Cloud
infrastructure rented by bol.com.
Offline index generation. The index generation 1 from historical
click data is implemented as a parallel dataflow computation in
Apache Spark using Spark MLLib pipeline steps [33] as abstraction,
and executed in regular intervals (typically once per day) in Google
Dataproc. It uses historical click data from the last 180 days of our
platform (stored in Google BigQuery) as its input, which amounts
to roughly 2.3 billion user-item interactions. The output of the
Spark job is a compressed representation of our index, stored in
the distributed filesystem in the Apache Avro format. The index
data is later on ingested by Serenade’s serving component, where
it requires around 13 gigabytes of memory.
Online serving of next item recommendations. The serving
component of Serenade is responsible for computing next item
recommendations with VMIS-kNN in response to session updates.
We implement this serving component in Rust, as a web application
based on the Actix [1] framework. The shopping frontend contacts
our Serenade servers whenever a user generates new item interac-
tions in their session (e.g., by visiting a product detail page). The
Serenade servers update the state of the evolving user session 2 ,
and respond to the shopping frontendwith a list of 21 recommended
next items for the user (the number of items required by the UI in
the frontend) based on a VMIS-kNN prediction 3 . The VMIS-kNN
predictions leverage the previously computed offline index. We ad-
ditionally apply business rules to the recommendations to remove
unavailable products and to filter for adult products.

Serenade - Low-Latency Session-Based Recommendation in e-Commerce at Scale SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

Evolving
Sessions

Session
Similarity

Index

...
Shop Frontend

Parallel Index
Generation

Historical
Session
Database

Stateful Recommendation
Servers

Evolving
Sessions

Session
Similarity

Index

Data-parallel batch generation of our
session similarity index from the last
180 days of browsing activities via Spark

Serenade pods maintain partitioned copies
of the evolving user sessions, and compute
next-item recommendations from the
replicated session similarity index

recommendation
requests with evolving
session updates

The shop frontend issues requests for
session-based next item recommendations
and renders them to user devices

index
replication

offline index generation online serving of next-item recommendations

Figure 1: High level architecture of the Serenade recommendation system. The offline component (left) generates a session
similarity index 1 from several billion historical click events via a parallel Spark job in regular intervals. The online serving
machines (right) maintain state about the evolving user sessions 2 , and leverage the session similarity index to compute next
item recommendations with VMIS-kNN in response to recommendation requests from the shopping frontend 3 .

Colocation of evolving sessions and session updates. As discussed
in Section 4.1, we need to colocate the evolving sessions with the
recommendation requests and session updates to be able to com-
pute up-to-date recommendations with low latency. We maintain
the evolving sessions in a local key-value store (RocksDB [6]) di-
rectly on the serving machines, to avoid additional network reads
and writes. For colocation, we have to partition both the evolving
sessions and the recommendation requests (which also contain
the session updates) over the serving machines, based on their
session identifier. In order to guarantee that all the update/recom-
mendation requests for a particular session are always handled by
the same machine, we configure request routing via “sticky ses-
sions” provided by Kubernetes’ session affinity functionality [4].
The communication with RocksDB turns out to be extremely fast; in
a microbenchmark with 10 million operations for our workload, we
found the 99th percentile of the read latency to be 5 microseconds,
and the 99th percentile of the write latency to be 18 microsec-
onds. This colocation approach provides a big latency improvement
over network reads and writes to a distributed key-value store like
BigTable, where the response latency for lookups is already 15ms
on the 99.5 percentile in our experience.
Discussion. Our colocation approach can be viewed as a trade-off
between reducing the response latency and guaranteeing fault tol-
erance for the session data, as the session data could be temporarily
lost in cases of machines failures or elastic scaling of the machine
pool. However, this turns out to be no problem in practice for several
reasons: (𝑖) Our service proved to be very stable, we encountered
no issues in a long A/B test running for several weeks (details will
be described in Section 5.2.3), where no elastic scaling was required,
as a small set of cheap machines with a low number of cores could
reliably handle hundreds of request per second; (𝑖𝑖) The sessions

are very short-lived anyways, we only leverage the most recent
interactions for recommendations (which also have the highest im-
pact on the session similarities), their loss would not have a drastic
impact, as the recommender would quickly collect new interac-
tions; (𝑖𝑖𝑖) The sessions are additionally tracked by other parts of
our e-commerce platform for analytics. It is not the task of the rec-
ommendation system to store them permanently, on the contrary,
we configure RocksDB to remove the data for a session after 30
minutes of inactivity.
Deployment. We deploy our recommendation servers via a Docker
image managed by Kubernetes. The image is created by our con-
tinuous integration infrastructure, and we leverage a multi-stage
build. In the first stage, we download all dependencies and com-
pile our Rust application (which results in a large image with a
size of several gigabytes); in the second stage, we reduce the size
of this image by only retaining the compiled application and the
runtime dependencies. The image for Serenade is then pushed into
a Docker repository. The application is deployed to a Google Ku-
bernetes Engine cluster, alongside with load balancing pods (istio
sidecars [3]) which provide us with the session affinity routing
required for colocating the evolving user sessions and recommen-
dation requests on our machines.
Depersonalisation. We are required to provide non-personalised
recommendations for users who do not give consent to leverage
their session history for personalisation. This is comparatively
easy to implement with VMIS-kNN: we create a non-personalised
variant which only leverages the currently displayed item on the
product detail page for recommendation. This depersonalisation
can be applied in real-time (e.g., when a user revokes their consent
to personalisation), as each request from the shop frontend includes
a binary flag denoting the status of the user consent.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

5 EXPERIMENTAL EVALUATION
In the following, we first evaluate the prediction quality and index
design of VMIS-kNN in Section 5.1, and subsequently evaluate
the scalability and business performance of Serenade in offline
experiments and an online A/B test (Section 5.2). We provide the
code for our experiments at https://github.com/bolcom/serenade-
experiments-sigmod.
Datasets. We leverage a combination of public and proprietary
click datasets from e-commerce for our offline experiments. We
experiment with the publicly available [5] datasets retailrocket (an
e-commerce dataset from the company “Retail Rocket”) and rsc15
(a dataset used in the 2015 ACM RecSys Challenge), which are com-
monly used in comparative studies on session-based recommenda-
tion [30]. In addition, we create the non-public datasets ecom-1m,
ecom-60m, ecom-90m and ecom-180m by sampling data from our
e-commerce platform with increasing numbers of clicks. The statis-
tics of these datasets are shown in Table 1. Each dataset consists
of tuples denoting the session_id, item_id and timestamp of a
click event on the platform.

Our proprietary dataset ecom-180m is more than six times larger
than the largest publicly available dataset rsc15. We additionally
show statistics of the distribution of clicks per session in the form
of its 25th, 50th, 75th and 99th percentile. We find that the majority
of sessions on e-commerce platforms is very short (e.g., the median
number of clicks per session is less than five) and that these statistics
are very similar across all six datasets. In the tail, the sessions from
our platform are about twice as long though compared to the public
datasets (e.g., the 99th percentile is around 38 clicks in our data and
19 clicks in the public datasets).

retailr rsc15 ecom-1m ecom-60m ecom-90m ecom-180m
clicks 86,635 31,708,461 1,152,438 67,017,367 89,883,761 189,317,506
sessions 23,318 7,981,581 214,490 10,679,757 13,799,762 28,824,487
items 21,276 37,483 110,988 1,760,602 2,263,670 3,305,412
days 10 181 30 29 91 91
public? yes yes no no no no
clicks per session
p25 2 2 2 2 2 2
p50 2 3 4 4 4 4
p75 4 4 6 7 7 7
p99 19 19 28 36 38 39

Table 1: Public and proprietary datasets for evaluation.

5.1 VMIS-kNN
5.1.1 State-of-the-Art PredictionQuality. Before evaluating systems-
related aspects, we run a sanity check experiment for the predictive
performance of VMIS-kNN. We aim to confirm that VMIS-kNN
also outperforms current neural-network based approaches in the
task of session-based recommendation in e-commerce (as recently
shown for VS-kNN [24, 30]).
Experimental setup. We replicate the setup from [24, 30], and
compare the predictive performance of VMIS-kNN against three
recent neural network-based approaches to session-based recom-
mendation (GRU4Rec [20], NARM [27] and STAMP [29]) on various
clickstream datasets sampled from our e-commerce platform. We
create five versions of the ecom-1m dataset by sampling a million
clicks from certain months in the past as historical sessions, and
measure the prediction quality of the top 20 recommended items
for each session of the subsequent day.

50
50
0
1.
5k

k

ecom-60m
MRR@20

ecom-90m
MRR@20

ecom-180m
MRR@20

rsc15
MRR@20

20 50 5001k 10k
m

50
50
0
1.
5k

k

Prec@20

20 50 5001k 10k
m

Prec@20

20 50 5001k 10k
m

Prec@20

20 50 5001k 10k
m

Prec@20

Figure 2: Sensitivity of MRR@20 and Prec@20 to the hyper-
parameters 𝑘 (the number of neighbors) and𝑚 (the number
of most recent sessions per item) in our proprietary datasets.

We optimise the hyperparameters of each approach on samples
of the training data, and report the average for each metric over all
our evaluation datasets. We report the metric values averaged over
all five versions of ecom-1m.
Results and discussion.We first investigate theMeanAverage Pre-
cision (MAP@20), Precision (Prec@20) and Recall (R@20), which
denote to what extent an approach correctly predicts the next items
in a session. VMIS-kNN outperforms the neural approaches in all of
these metrics. Its MAP@20 is .0268 compared to .0251 for the best
performing neural approach (GRU4Rec); the Prec@20 of VMIS-kNN
is .0722 compared to .0680 for the best performing neural approach
(NARM in this case); and VMIS-kNN’s R@20 is .378 compared to
.359 for the best performing neural approach GRU4Rec. We ad-
ditionally look at the Mean Reciprocal Rank (MRR@20), which
puts a stronger weight on the immediate next item in a session.
Again, VMIS-kNN outperforms all neural-based approaches with
an MRR@20 of .286 compared to .255 for the best performing neural
method (GRU4Rec in this case).

In summary, we confirm that the findings from recent stud-
ies on the state-of-the-art performance of VS-kNN also hold for
VMIS-kNN on our proprietary data. It is an open question, why
neural networks do not outperform conceptually simpler meth-
ods in sequential recommendation. There is recent evidence that
neural networks have difficulties capturing item frequency infor-
mation [21], and that many researchers do not adequately compare
their proposed neural methods against simple baselines [28, 30].

5.1.2 Sensitivity to Hyperparameter Choices. Next, we investigate
the sensitivity of VMIS-kNN to its hyperparameters: the number
of neighbors 𝑘 and the number of most recent sessions per item𝑚.
Experimental setup. We run an exhaustive grid search over 55
combinations of the hyperparameters (the 𝑘 most similar sessions
out of the𝑚 most recent sessions) for our four large datasets ecom-
60m, ecom-90m, ecom-180m and rsc15, where we use the last day as
held-out test set.
Results and discussion. Figure 2 illustrates the results of the grid
search for MRR@20 and Prec@20 on our datasets with a heatmap
where lighter colors indicate better metric values. We observe a
unimodal distribution of the resulting metric values for each dataset
and metric. The results differ (𝑖) based on dataset, e.g., all samples
from our proprietary data show similar outcomes, while the dis-
tribution for rsc15 is very different; and (𝑖𝑖) based on metric, e.g.,

https://github.com/bolcom/serenade-experiments-sigmod
https://github.com/bolcom/serenade-experiments-sigmod

Serenade - Low-Latency Session-Based Recommendation in e-Commerce at Scale SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

hyperparameters that work well for MRR (which focuses on the
position of the first correctly predicted relevant item) do not neces-
sary provide the best performance for Precision (which considers
all correctly predicted relevant items). Our results indicate that
VMIS-kNN is easy to tune via offline grid search for a given dataset
and target metric.

5.1.3 Index Design. Next, we run a microbenchmark comparing
VMIS-kNN vs VS-kNN to validate the performance of our index-
based similarity computation.
Experimental setup. We experiment with our index and similarity
computation (refered to as VMIS-kNN) from Section 3 and compare
it against two baseline implementations: (𝑖) VS-kNN - a baseline
implementation that mimics VS-kNN’s similarity computation by
holding the historical data in hashmaps, and first identifying the
𝑚 most recent sessions with at least one shared item before com-
puting the similarities, and (𝑖𝑖) VMIS-kNN-no-opt, a basic variant
of VMIS-kNN, which does not contain several optimisations such
as early stopping or using octonary heaps instead of binary heaps.

We conduct a micro-benchmark on the ecom-1m dataset. We
ask each variant to compute the 𝑘 closest sessions for the sessions
from the test set, and we randomly pick the number of items (e.g.,
the session length) for each session to include in the computation.
We repeat this experiment ten times for various values of𝑚 (the
number of most recent sessions to consider) with six threads, and
measure the execution times for 𝑘 = 100 (trying other values of 𝑘 did
not significantly change the results). We implement all algorithms
in Rust 1.54 and run the comparison on a machine with an i9-
10900KF CPU @ 3.7GHz with ten cores and 64GB of RAM, running
Windows 10 21H1.
Results and discussion. The bottom plot in Figure 3(a) shows
the resulting runtimes in microseconds for each of our variants.
The results are consistent across all values of𝑚: We find that both
VMIS-kNN and VMIS-kNN-no-opt drastically outperform the VS-
kNN baseline by a factor of three to five. We attribute this obser-
vation to the optimised access patterns in the index of VMIS-kNN,
which allows us to avoid costly set intersection operations, and
the minimisation of intermediate results with our heap data struc-
tures (Section 3). We furthermore observe that VMIS-kNN consis-
tently outperforms VMIS-kNN-no-opt by 6% to 12% which validates
our micro optimisations such as early stopping and leveraging
octonary heaps instead of binary heaps.

5.2 Serenade
Next, we evaluate our Serenade system. We validate our imple-
mentation choices (Section 5.2.1), run a load test for the system in
Section 5.2.2, and finally present the results from a three week long
A/B test on the live platform (Section 5.2.3).

5.2.1 Validation of Implementation Choices. We present an offline
experiment which focuses on the performance of our index-based
VMIS-kNN approach. We compare our Rust-based implementa-
tion against implementations in other programming languages and
computational engines to validate our design choice of a custom
implementation in Rust. Note that we provide the source code for
the alternative implementations in our experiment repository as
well.

Experimental setup. We compare our Rust-based VMIS-kNN im-
plementation against four other implementations:

• VS-Py – a Python-based implementation of the original VS-kNN
approach, based on the reference code [7] from the original VS-
kNN paper; we expect this variant to be non-competitive as it is
a mere research implementation;
• VMIS-Diff – an implementation of VMIS-kNN in Differential
Dataflow [32], which computes the recommendations incremen-
tally via joins and aggregations; this variant allows us to evaluate
the benefits of an incremental similarity computation for growing
sessions;
• VMIS-Java – an implementation of VMIS-kNN in Java, which
stores the historical session data in Java hashmaps; the purpose
of this variant is to evaluate the effects of not having full control
over the memory management during the similarity computation
(and instead relying on a garbage collector);
• VMIS-SQL – an implementation of VMIS-kNN in SQL, which
leverages the embeddable analytical database engineDuckDB [36]
in version 0.2.2; the purpose of this variant is to evaluate whether
a custom implementation of the approach is necessary; we note
that we found it very difficult to express the similarity computa-
tion in plain SQL, as it required several deeply nested subqueries;

We ensure through evaluations on held-out data that all variants
are correctly implemented and provide equal predictive perfor-
mance. We expose the historical session data from our public and
proprietary datasets to each of these baselines. Next, we ask each
implementation to sequentially compute next-item recommenda-
tions with a single thread for the growing evolving sessions in
the test set of each dataset, and measure the prediction time in
microseconds. We run each implementation on a n1-highmem-8
instance in the Google cloud with 50 gigabytes of RAM, and use
𝑚 = 5000 and 𝑘 = 100 as hyperparameter settings.
Results and discussion. The top plot of Figure 3(a) illustrates the
resulting runtimes from our experiment for the different datasets
and baseline implementations. Note that we plot the median and
90th percentile (p90) of these runtimes on a logarithmic scale in a
single bar, where the lighter top part denotes the 90th percentile
runtime. Our VMIS-kNN implementation consistently outperforms
all the baselines both in terms of median and p90 runtime; it is more
than two orders of magnitude faster than the Python reference im-
plementation, and more than one order of magnitude faster than
the differential dataflow implementation. The second-best imple-
mentation is the Java baseline, which is still outperformed by an
order of magnitude for the 90th percentile runtime on all datasets
except the small ecom-1m dataset. When we look at the results for
larger datasets, we additionally observe that several baselines start
to encounter memory issues (even though they can use 50 gigabytes
of RAM), and fail to complete the computation. This happens for
the Python implementation (which relies on pandas dataframes
internally), for the SQL implementation as well as for the Java vari-
ant. Note that our Serenade implementation provides a p90 runtime
of at most 1.7 milliseconds on all datasets. We attribute this to the
fact that our implementation allows us to carefully control memory
allocation and to avoid the materialisation of large intermediate
results (such as the complete set of item matches with the historical
sessions). We observe that the differential implementation always

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

ecom-1m retailrocket rsc15 ecom-60m ecom-90m ecom-180m
dataset

10

103

105

107

ru
nt

im
e

(m
ic

ro
s)

X X XX X X

VS-Py VMIS-Diff VMIS-Java VMIS-SQL VMIS-kNN

100 250 500 1000
sample size m

100

101

102

103

ru
nt

im
e

(m
ic

ro
s)

VS-kNN VMIS-kNN-no-opt VMIS-kNN

(a) (Top) Median and 90th percentile of the computation
time per session in microseconds (log-scale) for different
VMIS-kNN implementations; (Bottom) Microbenchmark
runtimes in microseconds (log-scale) for VMIS-kNN vs. VS-
kNN on the ecom-1m dataset with k = 100.

500

1000

re
qu

es
ts

p
er

se
co

nd

0

100

200

300

co
re

us
ag

e
(%

)

Serving machine 1 Serving machine 2

21:30 22:30 23:30
time

5
10
15
20

la
te

nc
y

(m
s)

p99.5 p90 p75

(b) Requests per second, core usage in percent and re-
sponse latency during a load test with more than 1,000
requests per second. Serenade handles about 500 requests
per second per core with a 90th percentile latency of less
than seven milliseconds.

200

400

600

re
qu

es
ts

/s
ec

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

day of the month

5

10

15

la
te

nc
y

(m
s) p99.5 p90 p75

(c) Requests per second and response latency per hour
during our three week long A/B test on the live platform.
Serenade responds within less than seven milliseconds in
90% of the cases, even for peak times with more than 600
requests per second.

Figure 3: Offline and online performance of Serenade.

manages to compute results; however, the incremental computation
does not pay off runtime-wise, because differential dataflow has to
index all intermediate results due to its support for updates in re-
sponse to input data changes (which is not required in our use case).
Finally, we find the SQL implementation to be non-competitive
and to not scale to large datasets, which we attribute to the large
intermediates from the nested subqueries, and which confirms that
a custom implementation of VMIS-kNN is more suitable to scale to
large datasets.

5.2.2 Offline Load Test. We finally run a load test in our staging
environment to validate that Serenade is able to handle peak pro-
duction workloads.
Experimental setup. We leverage a setup that resembles our
production environment: Serenade’s index is built from the last
180 days of browsing activities, covering 6.5 million distinct items.
We deploy Serenade on two Kubernetes pods, running on shared
core n1-standard-16 instances in the Google Cloud, where each
pod gets provisioned with three cores from an Intel Xeon CPU
@ 2.00GHz and 16 GB of RAM.

We generate a simulated load of more than 1,000 requests per
second by replaying historical traffic via a load generator applica-
tion for several hours. Wemeasure the response latency of Serenade
as well as the core usage on the machines.
Results and discussion. Figure 3(b) plots the resulting response
latency and core usage for our load test. We find that Serenade
gracefully handles the load of more than 1,000 requests per second,
and responds within less than 7 milliseconds in 90 percent of the
cases (p90) and in less than 15 milliseconds in 99.5% of the cases
(p99.5). Each instance uses only one of the three provisioned cores
for most of the time. We base our production experiments in the
following on the outcomes of this load test.

5.2.3 Online Evaluation in an A/B Test. We present results from
a three week long online A/B test on our e-commerce platform,
where we compared two variants of Serenade against our existing
legacy recommendation system (refered to as legacy), which applies
a variant of classic item-to-item collaborative filtering [39].

Experimental setup. We show Serenade’s recommendations on
the product detail page of our e-commerce platform, in a slot titled
‘other customers also viewed’. We evaluate two different variants
of Serenade: the first variant serenade-hist leverages the last two
items from each evolving session to compute predictions, while
the second variant serenade-recent only leverages the most recent
item. We set the hyperparameters of VS-kNN to 𝑚 = 500 and
𝑘 = 500, which provide a reasonable trade-off between prediction
quality in offline experiments and index size. We run the test for
21 days, in which more than 45 million randomly assigned user
sessions were subjected to the recommendations from our variants.
We ensure that both the legacy system and Serenade consume the
same click data as input at the same time (once per night). Serenade
builds its index from the last 180 days of data; after filtering, its
daily training data consists of around 111 million sessions with 582
million distinct user-item interactions and contains 6.5M distinct
items. We measure the request load to the recommendation system,
the response latency (as experienced from the shop frontend) and
several business-specific engagement metrics.
Results and discussion. We discuss the systems- and business-
specific outcomes of our A/B test.
Response latency. Our most important systems-related metrics is
the response latency. Our recommendation systems have to adhere
to a strict SLA of responding in less than 50 milliseconds, otherwise
requests would be discarded. Recent research also indicates that fast
response times help with the acceptance of recommendations in
general [24]. Our system architecture and implementation decisions
(Section 4) are tailored to allow for low latency responses of our
system. This is confirmed by the experimental results illustrated in
Figure 3(c), which plots different percentiles of the response latency
distribution over the three weeks of our A/B test, and shows the
load of the system (in terms of the number of requests per second)
for comparison. The request load varies between 200 and 600 re-
quests per second over the day. We find that Serenade’s response
latencies are very low, the 90th percentile is consistenly around 5
milliseconds, and even the 99.5th percentile is below 10 millisec-
onds in the majority of cases. This confirms that Serenade exhibits
a consistently fast, and stable low-latency response behavior.

Serenade - Low-Latency Session-Based Recommendation in e-Commerce at Scale SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

CPU usage and operational cost. We deploy Serenade analogously to
the setup from the load test in Section 5.2.2: We leverage two Kuber-
netes pods, running on shared core n1-standard-16 instances in
the Google Cloud, where each pod gets provisioned with cores of an
Intel Xeon CPU @ 2.00GHz and 16 GB of RAM. Even with such low
resources, Serenade is able to gracefully handle the request work-
load. We reconfirm the findings from our load test (Section 5.2.2), as
Serenade only exhibits a core usage of less than 36% (less than one
core) in cases with over 500 requests per second. We also observe a
well-behaved linear scaling (with a gentle slope) of the core usage
with the number of requests per second.
Customer engagement. Systems-related metrics are important for
successfully operating a recommender system, however in the end
the recommender system has to perform well in business-related
metrics to be valuable for an e-commerce platform. As VMIS-kNN
outperforms other approaches in offline evaluations (Section 5.1.1),
we are interested to determine how this behavior translates to
customer engagement in our A/B test. For that, we measure a
conversion-related business metric for the engagement with rec-
ommendations on the product detail page.

We find that our session-based recommenders drastically in-
crease this engagement metric for the slot on the product detail
page. Serenade-hist exhibits a 2.85% increase in the business metric
(compared to legacy), and serenade-recent even shows an increase
of 5.72% (both findings are statistically significant). When we con-
trol for the overall impact on a site-wide level however, we find
that serenade-recent exhibits a cannibalising behavior, as it drives
down the engagement of other slots on the product detail page (e.g.,
the ‘often bought together’ slot). We do not observe this effect for
serenade-hist though, rendering it the preferred variant.
Summary. We find that Serenade easily handles the load of up to
600 requests per second during our A/B test and consistently gener-
ates its recommendations with very low response latency (less than
seven milliseconds in the 90th percentile). We furthermore find
that the session-based recommendations produced by VMIS-kNN
significantly increase customer engagement compared to classical
item-to-item recommendations (as produced by our legacy system).
We would like to highlight that, to the best of our knowledge, we
are the first to provide empirical evidence that the superior offline
performance of VS-kNN/VMIS-kNN also translates to superior per-
formance in terms of business metrics in a live, real recommender
system. This is often not the case for academic recommendation
approaches, the winning solution of the highly popularised Netflix
prize, for example, never went into production [8].

6 RELATEDWORK
Research on recommender systems [11, 12, 17–19, 31, 35, 38, 42, 46,
48–50] is a growing field, with a close connection to industry use
cases [43–45], as illustrated by the famous “Netflix Prize” competi-
tion [25]. Translating academic progress into deployable solutions
has proven to be very difficult though [24], exemplified by the fact
that the winning solution of the Netflix prize never went into pro-
duction [8]. Nearest neighbor-based recommendations, which are in
the focus of our work, are a classical approach to recommendation
mining [10, 26, 39–41], and are widely deployed in industry [13–
15, 22, 34]. Despite their popularity, these approaches are typically

outperformed by matrix factorisation- and deep learning-based
methods in offline evaluations on classical collaborative filtering
problems [25].

However, recent research indicates that nearest neighbor-based
approaches provide state-of-the-art performance and outperform
neural networks in sequence-based recommendation tasks. An ex-
ample for such a task is session-based recommendation, which is in
the focus of our work, where recent studies [23, 24, 30] indicate that
nearest neighbor-based methods outperform previously proposed
neural networks [20, 27, 29, 47]. Similar results have been obtained
for the more general sequence-based recommendation task of next
basket recommendation (where the set of items in a future shopping
basket has to be predicted). Here, the nearest neighbor-based state-
of-the-art approach TIFU-kNN [21] and simple popularity-based
approaches [28] outperform neural networks as well.

7 LEARNINGS & CONCLUSION
We presented our nearest neighbor approach VMIS-kNN as well
as the design and implementation of our scalable session-based
recommender system Serenade. We conducted an extensive offline
evaluation of VMIS-kNN and Serenade to validate our design deci-
sions, and detailed results on the latency, throughput and predictive
performance of our recommender system from an online A/B test
with up to 600 requests per second for 6.5 million distinct items
on more than 45 million user sessions on bol.com’s e-commerce
platform.

In addition to the contributions listed in Section 1, we would like
to highlight Serenade’s low operational cost: We run two instances
with three cores each in the Google cloud (provisioned on shared
core n1-standard-16 instances) for the serving pods, and require
40 minutes on 75 machines of type n1-highmem-8 for creating the
index with Spark every day, which results in a total operational
cost of less than 30 euros per day for Serenade. As discussed in
Section 5.2.3, Serenade only leverages one of the three cores on
each instance, and we only provision the other cores to be prepared
for peak loads, e.g., during denial-of-service attacks.

This low cost becomes especially attractive when we compare it
with the high cost to train deep learning models. As an example, a
neural learning-to-rank model on our platform incurs at least an
order of magnitude more cost to be operated on a daily basis, and
additionally requires GPU machines for training, which are often a
contested resource in the cloud.

In future work, we intend to explore whether we can run our
similarity computations on a compressed version of the index, and
whether we can incrementally maintain the index with a system
such as Differential Dataflow [32].
Acknowledgements. This work was supported by Ahold Delhaize.
All content represents the opinion of the authors, which is not necessar-
ily shared or endorsed by their respective employers and/or sponsors.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

REFERENCES
[1] 2021. Actix Web. https://actix.rs.
[2] 2021. d-ary heap. https://docs.rs/dary_heap/0.3.0/dary_heap/.
[3] 2021. Istio sidecars. https://istio.io/latest/docs/reference/config/networking/

sidecar/.
[4] 2021. Kubernetes networking services. https://kubernetes.io/docs/concepts/

services-networking/service/.
[5] 2021. Performance Comparison of Neural and Non-Neural Approaches to Session-

based Recommendation - Additional Information. https://rn5l.github.io/session-
rec/.

[6] 2021. RocksDB. https://rocksdb.org.
[7] 2021. VS-kNN reference implementation. https://github.com/rn5l/session-rec/

blob/master/algorithms/knn/vsknn.py.
[8] Xavier Amatriain. 2012. Building Industrial-scale Real-world Recommender

Systems. RecSys (2012), 7–8.
[9] Ioannis Arapakis, Xiao Bai, and B Barla Cambazoglu. 2014. Impact of response

latency on user behavior in web search. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in information retrieval. 103–
112.

[10] Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F
Mokbel. 2011. StreamRec: a real-time recommender system. SIGMOD (2011),
1243–1246.

[11] Tong Chen, Hongzhi Yin, Hongxu Chen, Rui Yan, Quoc Viet Hung Nguyen, and
Xue Li. 2019. Air: Attentional intention-aware recommender systems. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 304–315.

[12] Kyung-Jae Cho, Yeon-Chang Lee, Kyungsik Han, Jaeho Choi, and Sang-Wook Kim.
2019. No, that’s not my feedback: TV show recommendation using watchable
interval. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 316–327.

[13] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. WWW
(2007), 271–280.

[14] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. 2010. The YouTube video recommendation system. RecSys (2010),
293–296.

[15] Ted Dunning and Ellen Friedman. 2014. Practical Machine Learning: Innovations
in Recommendation. " O’Reilly Media, Inc.".

[16] Mohamed Y Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha
Krettek, and John McPherson. 2011. CoHadoop: flexible data placement and its
exploitation in Hadoop. Proceedings of the VLDB Endowment 4, 9 (2011), 575–585.

[17] Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-
Seng Chua, and Depeng Jin. 2019. Neural multi-task recommendation from multi-
behavior data. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1554–1557.

[18] Lei Guo, Hongzhi Yin, Qinyong Wang, Bin Cui, Zi Huang, and Lizhen Cui. 2020.
Group recommendation with latent voting mechanism. In 2020 IEEE 36th Inter-
national Conference on Data Engineering (ICDE). IEEE, 121–132.

[19] Jiayuan He, Jianzhong Qi, and Kotagiri Ramamohanarao. 2019. A joint context-
aware embedding for trip recommendations. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 292–303.

[20] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks.
arXiv:1511.06939 (2015).

[21] Haoji Hu, Xiangnan He, Jinyang Gao, and Zhi-Li Zhang. 2020. Modeling personal-
ized item frequency information for next-basket recommendation. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1071–1080.

[22] YanxiangHuang, Bin Cui,Wenyu Zhang, Jie Jiang, and Ying Xu. 2015. TencentRec:
Real-time Stream Recommendation in Practice. SIGMOD (2015), 227–238.

[23] Dietmar Jannach andMalte Ludewig. 2017. When recurrent neural networksmeet
the neighborhood for session-based recommendation. RecSys (2017), 306–310.

[24] Barrie Kersbergen and Sebastian Schelter. 2021. Learnings from a Retail Recom-
mendation System on Billions of Interactions at bol.com. ICDE (2021).

[25] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[26] Justin J Levandoski, Mohamed Sarwat, Mohamed F Mokbel, and Michael D
Ekstrand. 2012. RecStore: an extensible and adaptive framework for online
recommender queries inside the database engine. EDBT (2012), 86–96.

[27] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. CIKM (2017), 1419–1428.

[28] Ming Li, Sami Jullien, Mozhdeh Ariannezhad, and Maarten de Rijke. 2021. A
Next Basket Recommendation Reality Check. arXiv preprint arXiv:2109.14233

(2021).
[29] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-

term attention/memory priority model for session-based recommendation. KDD
(2018), 1831–1839.

[30] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Per-
formance comparison of neural and non-neural approaches to session-based
recommendation. In Proceedings of the 13th ACM Conference on Recommender
Systems. 462–466.

[31] Sreekanth Madisetty. 2019. Event recommendation using social media. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2106–2110.

[32] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.
Differential Dataflow.. In CIDR.

[33] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[34] Sean Owen. 2012. Mahout in action. Vol. 10. Manning Shelter Island, NY.
[35] Andreas Pfadler, Huan Zhao, JizheWang, LifengWang, Pipei Huang, and Dik Lun

Lee. 2020. Billion-scale Recommendation with Heterogeneous Side Information
at Taobao. In 36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020. IEEE, 1667–1676. https://doi.org/10.1109/
ICDE48307.2020.00148

[36] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[37] Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten De Rijke.
2019. Repeatnet: A repeat aware neural recommendation machine for session-
based recommendation. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, Vol. 33. 4806–4813.

[38] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-
mender systems. In Recommender systems handbook. 1–35.

[39] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285–295.

[40] Sebastian Schelter, Christoph Boden, and Volker Markl. 2012. Scalable similarity-
based neighborhood methods with mapreduce. RecSys (2012), 163–170.

[41] Sebastian Schelter, Ufuk Celebi, and Ted Dunning. 2019. Efficient incremental
cooccurrence analysis for item-based collaborative filtering. In Proceedings of the
31st International Conference on Scientific and Statistical Database Management.
61–72.

[42] Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li, and
Jun Gao. 2020. Poisonrec: an adaptive data poisoning framework for attacking
black-box recommender systems. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 157–168.

[43] Manos Tsagkias, Tracy Holloway King, Surya Kallumadi, Vanessa Murdock, and
Maarten de Rijke. 2021. Challenges and research opportunities in ecommerce
search and recommendations. In ACM SIGIR Forum, Vol. 54. ACM New York, NY,
USA, 1–23.

[44] Chi-Man Wong, Fan Feng, Wen Zhang, Chi-Man Vong, Hui Chen, Yichi Zhang,
Peng He, Huan Chen, Kun Zhao, and Huajun Chen. 2021. Improving Conversa-
tional Recommendation System by Pretraining on Billions Scale of Knowledge
Graph. ICDE (2021).

[45] Xu Xie, Fei Sun, Xiaoyong Yang, Zhao Yang, Jinyang Gao,WenwuOu, and Bin Cui.
2021. Explore User Neighborhood for Real-time E-commerce Recommendation.
ICDE (2021).

[46] Hongzhi Yin, Qinyong Wang, Kai Zheng, Zhixu Li, Jiali Yang, and Xiaofang
Zhou. 2019. Social influence-based group representation learning for group
recommendation. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 566–577.

[47] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-
angnan He. 2019. A simple convolutional generative network for next item
recommendation. WSDM (2019), 582–590.

[48] Yu Zheng, Chen Gao, Xiangnan He, Yong Li, and Depeng Jin. 2020. Price-aware
recommendation with graph convolutional networks. In 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE). IEEE, 133–144.

[49] Xiangmin Zhou, Dong Qin, Xiaolu Lu, Lei Chen, and Yanchun Zhang. 2019.
Online social media recommendation over streams. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 938–949.

[50] Zainab Zolaktaf, Reza Babanezhad, and Rachel Pottinger. 2018. A generic top-
n recommendation framework for trading-off accuracy, novelty, and coverage.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
149–160.

https://actix.rs
https://docs.rs/dary_heap/0.3.0/dary_heap/
https://istio.io/latest/docs/reference/config/networking/sidecar/
https://istio.io/latest/docs/reference/config/networking/sidecar/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://rn5l.github.io/session-rec/
https://rn5l.github.io/session-rec/
https://rocksdb.org
https://github.com/rn5l/session-rec/blob/master/algorithms/knn/vsknn.py
https://github.com/rn5l/session-rec/blob/master/algorithms/knn/vsknn.py
https://doi.org/10.1109/ICDE48307.2020.00148
https://doi.org/10.1109/ICDE48307.2020.00148

	Abstract
	1 Introduction
	2 Background
	3 Vector-Multiplication-Indexed-Session-kNN (VMIS-kNN)
	4 Serenade
	4.1 Design Considerations
	4.2 Implementation

	5 Experimental Evaluation
	5.1 VMIS-kNN
	5.2 Serenade

	6 Related Work
	7 Learnings & Conclusion
	References

