Learning to Validate the Predictions of
Black Box Classifiers on Unseen Data

Sebastian Schelter
sebastian.schelter@nyu.edu
New York University

ABSTRACT

Machine Learning (ML) models are difficult to maintain in
production settings. In particular, deviations of the unseen
serving data (for which we want to compute predictions)
from the source data (on which the model was trained) pose
a central challenge, especially when model training and pre-
diction are outsourced via cloud services. Errors or shifts in
the serving data can affect the predictive quality of a model,
but are hard to detect for engineers operating ML deploy-
ments.

We propose a simple approach to automate the validation
of deployed ML models by estimating the model’s predictive
performance on unseen, unlabeled serving data. In contrast
to existing work, we do not require explicit distributional
assumptions on the dataset shift between the source and
serving data. Instead, we rely on a programmatic specifi-
cation of typical cases of dataset shift and data errors. We
use this information to learn a performance predictor for a
pretrained black box model that automatically raises alarms
when it detects performance drops on unseen serving data.

We experimentally evaluate our approach on various data-
sets, models and error types. We find that it reliably predicts
the performance of black box models in the majority of cases,
and outperforms several baselines even in the presence of
unspecified data errors.

ACM Reference Format:

Sebastian Schelter, Tammo Rukat, and Felix Biessmann. 2020. Learn-
ing to Validate the Predictions of Black Box Classifiers on Unseen
Data. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’20), June 14-19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/lO.l145/3318464.3380604

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3380604

Tammo Rukat
tammruka@amazon.com
Amazon Research

Felix Biessmann
fbiessmann@beuth-hochschule.de
Beuth University Berlin

1 INTRODUCTION

Machine learning (ML) has become a central component in
modern software systems. Yet, the maintenance of ML appli-
cations remains challenging [12, 19, 22]. Many problems in
this space are due to unexpected shifts or errors in the data
that is fed into ML models at prediction time. These shifts
and errors typically originate from bugs in data preprocess-
ing code or changes in the data generating process in the real
world. This problem is exacerbated in situations where differ-
ent parties are involved in the provision of the data and the
training of the model. Many engineering teams, especially in
smaller companies, lack ML expert knowledge, and therefore
often outsource the training of ML models. They might ei-
ther use cloud services for model training and hosting, such
as Google AutoML Tables, or locally apply AutoML libraries,
which automate model training. In such cases, the engineer-
ing team provides input data and retrieves predictions, but
the details of the model may not be accessible.

Consider the following exemplary scenario: An engineer-
ing team of an e-commerce company leverages a cloud ML
service to train and deploy an ML model for predicting the
sales numbers of competitor products. Some time later, an
engineer accidentally introduces errors in the preprocessing
code that prepares new serving data for the model, and the
error changes the scale of certain numeric attributes. The
deployed cloud model will still output predictions for un-
seen competitor products, but its predictions cannot be relied
upon anymore, as its weights are not properly fitted to the
changed serving data. Unfortunately, it is difficult for the
engineers to validate the predictions they retrieve from the
black box model in the cloud, as there is no automated way
to retrieve the ground truth (the future sales numbers of the
competitor in this scenario).

While ML experts have specialized knowledge to debug
models and predictions in such cases [2, 9, 13], there is a
lack of automated methods for non-ML expert users to decide
whether they can rely on the predictions of an ML model on
unseen data.

We tackle this issue by introducing the performance pre-
diction problem for black box classifiers in Section 2. Next,
we propose a simple approach to automatically validate the
predictions of a pretrained ML model by estimating its pre-
dictive performance on unseen, unlabeled serving data. In

https://doi.org/10.1145/3318464.3380604
https://doi.org/10.1145/3318464.3380604
https://doi.org/10.1145/3318464.3380604

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

user-defined [2)
error generators ‘compute predictions
and scores for the

T corrupted examples 'C'Z”:‘”lpr::;;'zfée&
loan? model
generate corrupt age | income | loan? statistics of scores
examples with redictions
user-defined 18 | 250,000 | no %n corrupt | |1 corrupt
error generators N/A | 5,000 yes examples examples

black box
ML model

N/A | 2,800 no

labeled test g
age | income | loan? age | incom loan?

18 2,500 no N/A | -2,500 no

40 5,000 yes 40 5,000 yes

37 2,800 no 37 -2,800 no

(a) Learning a performance predictor for a pretrained black box classifier, using synthetically
corrupted data to explore how data errors impact the resulting prediction quality.

Sebastian Schelter, Tammo Rukat, and Felix Biessmann

unseen
serving data

black box
ML model
98,
o/eve
% oL
ele/®

black box model
computes
predictions for
unseen data

income

age
19 2,100
N/A | 5,500
32 1,700

learn a performance
predictor from model
predictions and scores

0,

performance
predictor computes
statistics on
predictions and
estimates score

statistics of
predictions on
unseen examples

learned
performance
Predictor

33

performance
predictor

s

estimate of score
on unseen data

0.69

end user or serving
system inspects
estimated score to
decide whether to
trust predictions

(b) Using the performance predictor to esti-
mate the accuracy on unseen serving data.

Figure 1: Overview of our proposed approach: (a) We learn a performance predictor from synthetically corrupted
input data to estimate the prediction quality of a black box model on a batch of serving data from statistics
of its outputs. (b) This performance predictor is subsequently leveraged to estimate the prediction quality of
the black box model on unseen, unlabeled serving data. End users and serving systems can raise alarms if this
estimate is significantly below the expected prediction quality of the black box model.

contrast to existing work, we do not require explicit dis-
tributional assumptions on the dataset shift between the
source and serving data nor force the user to define distance
functions and thresholds between source and serving data.
Instead, an engineer programmatically specifies typical cases
of dataset shift and data errors that they expect to observe
in real world data. Based on this information, we learn a
performance predictor for a pretrained black box model to
be deployed along with the original model (Section 3). The
performance predictor can automatically raise alarms if it
detects performance drops on unseen serving data.

In contrast to previous work [1, 20], our approach does
not require access to features extracted from the raw input
data but only to the model outputs, and can thus treat the
ML model as a black box. This property makes it suitable
for the automated monitoring of the aggregate prediction
quality in ML pipelines.

We show how to implement our approach using popular
python-based ML libraries in Section 4 and discuss related
work in Section 5. Finally, we demonstrate its effectiveness
on a variety of real world datasets in an extensive evaluation,
which covers several models that consume relational data,
text data and image data (Section 6).

The contributions of this paper are the following:

e We introduce the performance prediction problem for
black box classifiers (Section 2).

e We discuss how to automatically estimate the prediction
scores of black box classifiers on unseen, unlabeled, and
potentially shifted or erroneous serving data (Section 3).

e We describe how to implement our approach using a pop-
ular ML library (Section 4).

o We experimentally evaluate our approach on various data-
sets, models and error types, including an external cloud
service. We find that it reliably predicts the performance of
black box models in the majority of cases, and outperforms
several baselines in the performance prediction task, even
in the presence of unspecified data errors (Section 6).

2 OVERVIEW & PROBLEM STATEMENT

Overview. Figure 1(b) illustrates how we address the prob-
lem of deciding whether we can rely on the predictions of a
black box model on unseen, unlabeled serving data. Specifi-
cally, we want to know whether the predictions of the black
box model on a batch of serving data have the same predic-
tion quality (e.g., accuracy) as its predictions on the training
data @ (which we would generally expect due to the general-
ization capabilities of a well-trained classifier). However, we
cannot compute the true accuracy of the black box model on
the unseen data, as we do not have access to the true labels.
Therefore, we provide a learned performance predictor (tai-
lored to the black box model), which estimates the accuracy
of the black box model’s predictions on the serving data @.
This estimate can then be used to decide whether to rely on
the predictions of the black box model @.

Figure 1(a) gives an overview of how we learn the perfor-
mance predictor for a given black box model. We have an
end user specify potential errors (e.g., missing values, encod-
ing errors, etc.) that they might expect to see in the serving
data. They need to specify the type of expected errors, but
not their magnitude. They can draw upon their professional
experience to decide upon such potential errors.

Learning to Validate the Predictions of Black Box Classifiers

Based on these potential errors, we generate synthetically
corrupted input datasets by applying error generators to the
test set that was used for training the black box model @.
We record the prediction score (which we can compute in
this case as we have access to the labels in the test set) as
well as statistics of the distribution of the model’s outputs for
each synthetically corrupted dataset @. We define a regres-
sion problem in which the accuracy of the black box model
is predicted from statistics of its outputs. We refer to this
regression model as “performance predictor” @.

Problem Statement. We formalize the problem addressed
in this paper, before we describe our approach in detail in
the next section.

Data. We are given relational data 9 with attributes A = {A;,
...,AN} that is comprised of tuples t € D. The black box
model is trained on the source dataset Dgource and will af-
terwards be applied to the unseen serving dataset Dyerying.
These datasets are disjunct Dgource N Dserving = @ and tuples
are assigned independently and at random (i.i.d.).

Black Box Model. We assume that we are provided with a
black box classifier trained on a set {(t,y)} of examples
t € Dsource and labels y € C = {cy,...,cm}. The black
box character of the model corresponds to the fact that the
model applies an unknown feature map ¢ : A — R? to
compute a numerical representation of the relational input
data, and that the model applies an unknown prediction func-
tion f : R — A™ to compute predictions for m classes from
the data. We assume, however, that the model optimizes a
known scoring function for n examples with known labels
L: A™™ x C" — [0, 1], such as accuracy.

Perturbations. We furthermore assume that there exist per-
turbations e which potentially introduce errors into data.
We can think of them as parameterized functions, e.g., in-
troducing missing values in certain columns with a given
probability p. These missing values could for example be
accidentally introduced through errors in data integration
code. Further examples for errors are swapped columns, e.g.,
introduced through buggy input forms [8], or scaled numer-
ical columns, e.g., when an engineer would unintentionally
switch to a scale in milliseconds instead of seconds for a
given feature column. We assume that the set of perturba-
tions E = (ey, ..., eq) is known but the probabilities of occur-
rence Perr = [p1,. .., pq] are unknown (e.g., we anecdotally
know which errors might potentially occur in ML pipelines,
but not how frequent they are). Note that the absence of
errors is represented by pery = 0.

Performance Prediction Problem. Let Dmaybe_corrupt denote the
result of applying the perturbations E to Dserving With un-
known per (e.g., serving data for the model that was acci-
dentally corrupted by buggy preprocessing code). Note that

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

we do not know the labels ygerving for the unseen serving
dataset, which means that we cannot compute the prediction
quality L(f (¢(Dmaybe_corrupt))s Yserving) on the unseen (and
potentially corrupted) serving data.

The predictions on the serving data should not be used
if the prediction quality on the serving data is significantly
lower than the quality achieved on a held-out sample from
the source data during training. Our performance predictor
addresses this as a regression problem, estimating the predic-
tion quality L(f (¢ (Dmaybe_corrupt))’ YServing) on the serving
dataset without knowing the ground truth ygerving. This esti-
mate can subsequently be used to decide whether to rely on
the predictions on the serving data or not.

The problem at hand can also be treated as a binary clas-
sification problem if we assume a threshold ¢ for the relative
quality loss that a user would be willing to accept (e.g., 5%
compared to the training scenario). In this case, to which we
refer as performance validation, the goal is to decide whether
the prediction quality on the unseen unlabeled serving data
falls within this threshold: L(f (¢(Dmaybe_corrupt))» Yserving) =
(1=1) - L(f($(Drest)), Yiest)-

Note that the described performance prediction problem
is different from existing work, as we (i) do not impose
distributional assumptions on the shift between source and
serving data, (ii) do not assume knowledge of the feature
space that the model uses, and (iii) only require access to
the model predictions. In our scenario, it is hard to apply
generic dataset shift detection methods because the feature
map ¢ is unknown and the model could for example ignore
some attributes completely or transform them in away that
is independent of a perturbation. Examples for such cases are
ignored features due to L1 regularization, or feature maps
such as binarization that just check whether a feature is
different from zero and therefore scale invariant.

3 APPROACH

We describe the procedure for learning to predict perfor-
mance via a regression model. Our approach is based on the
idea of analyzing the distribution of the model outputs as a
signal for potential data errors and shifts. We build on work
from the ML community [13], which addresses data shifts
with a strict distributional assumption. In contrast to this
work, we provide an estimate of the expected model accu-
racy on erroneous data, and do not require users to manually
specify thresholds for hypothesis tests. Instead, we directly
predict the accuracy of the black box model.

Training the performance predictor. The steps for train-
ing our performance predictor h are shown in Algorithm 1.
We assume that we are provided with a black box classifier f
which has been trained on the source data. Furthermore, we
assume to have access to a set of error generators E that

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

Sebastian Schelter, Tammo Rukat, and Felix Biessmann

Algorithm 1 Training a performance predictor h for a pre-

trained black box model f.

Input: (Diain, Drest) disjunct partitions of Dsgyree,
black box model f and feature map ¢ pretrained
on Dyyain, user-specified error generators E
1 (Xiests Ytest) < Drest
2 gtest — L(f(¢(Xtest))7 Ytest)
3 M«
4: for error generator e < E do
5: Xeorrupt ¢ corrupt Xiest € Dhegt With e
6
7
8
9

> score on test data

> score on corrupted examples

A

Ycorrupt — f (¢(Xcorrupt))

A

gcorrupt — L(Ycorruptv Ytest)
> statistics of model outputs
10: Leorrupt < prediction_statistics(Ycorrupt)
11: M MU (§00rrupt, Zcorrupt)
12: end for
13: h « train a regression model on M
4: return h

—_

produce certain types of randomized dataset shifts. We ap-
ply each error generator e to held-out data Dyet from the
training process, and thereby generate corrupted examples
Xeorrupt in line 5. We compute the actual prediction score
Leorrupt by comparing the model predictions Ycormpt with the
true labels yies in line 8. Existing work suggests that the
univariate distributions of the columns of the matrix Y =
f(#(X)) are predictive of dataset shifts [13, 20]. We build on
these findings, and leverage a univariate non-parametric esti-
mate of the distributions of each output dimension of f. More
concretely, we compute percentiles {corrypt 0f the black box
model outputs ?corrupt = f(¢(Xcorrupt)) as features for the
performance predictor h. We record both the features {corrupt
and the score as training data for our regression model in the
set M (lines 3-12). Finally, we train our performance predic-
tor h on these examples in line 13 to predict the score £corrupt
from the features {corrupt-

Performance prediction on unseen serving data. Algo-
rithm 2 details an example of how to apply our performance
predictor h to unseen (and unlabeled) serving data Xserving.
First, we compute the required features {serving in the form of
percentiles of the outputs ?Serving, which the model f assigns
to the examples Xyerving. Next, we have our performance pre-
dictor h estimate the score fserving = h({serving) of f on the
serving data.

We can alternatively learn a performance validator that
predicts whether the relative quality drop exceeds a user-
defined threshold (Section 2). Given a user-defined threshold
t for an acceptable performance loss in comparison to score

Algorithm 2 Performance prediction for unlabeled serving
data.

Input: serving data Xgerving, black box model f and feature
map ¢, performance predictor h

Yserving — f(¢(Xserving))

> statistics of model outputs

Cserving < prediction_statistics(Yserving)

Cserving < h({serving) > predicted score on serving data

RANE I

return serving

on held-out test data (e.g., 5%), we turn performance predic-
tion from a regression problem (predicting the score) into
a binary classification problem (asking whether the score
is within the threshold ¢ of the expected score). We train a
specialized classification model, which uses our performance
predictions and leverages additional features such as the re-
sults of hypothesis tests on model outputs between source
and serving data [13]. The major difference of the perfor-
mance validator to Algorithms 1 & 2 is that we need to retain
the predictions Ytest which the black box model gave on the
test set, as we need them to compute our features (e.g., the
results of hypothesis tests) later.

4 IMPLEMENTATION

We implement our approach in Python, building upon the
established python-based ML libraries scikit-learn [17] and
the pandas ecosystem [14]. We assume that we are provided
with a black box ML model that ingests relational data from
a pandas dataframe and outputs predictions. This black box
model only needs to be provided in an executable manner
(e.g., as a binary file or as a network service). We only require
that the model returns the predicted class probabilities for
serving data (e.g., via the predict_proba method in python-
based ML libraries).

Furthermore, we assume that users indicate the types of
errors which they expect to potentially occur (e.g., missing
values in certain columns). To this end, they can either choose
from error generators provided in our library or implement
their own in a few lines of python code by implementing
the corrupt method of an abstract ErrorGen base class. In
general, an error generator for our approach simply iterates
over the rows of a pandas dataframe and randomly corrupts
selected columns. Thereby, users can leverage the full ex-
pressivity of Python to generate errors. We illustrate how to
simulate missing values and encoding errors:

class MissingValues(ErrorGen):
def corrupt(self, data, column, prob)
for row in data:
if random() < prob:
row[column] = NA # Introduce missing values

Learning to Validate the Predictions of Black Box Classifiers

class EncodingErrors(ErrorGen):
def corrupt(self, data, column, prob):
for row in data:
if random() < prob:

row[column] = row[column]
.replace('E', 'E') # Introduce
.replace('6', 'e') # encoding
.replace('i', '®') # errors

We implement Algorithm 1 by learning a random forest-
based regression model as performance predictor. Our ap-
proach generates the features for this predictor as follows.
We apply the corresponding error generators with randomly
chosen magnitudes on a held-out part of the black box model’s
training data. These error generators copy the dataframe and
randomly inject the specified errors into the data. We then
compute the model outputs via the predict_proba method
of the model, as well as the true prediction score on the
corrupted data. We featurize the model outputs by comput-
ing their class-wise percentiles (collecting the Oth, 5th, 10th,
... percentile). Finally, we train a RandomForestRegressor
with five-fold cross-validation, and grid search over the num-
ber of trees. The objective of this regressor is to minimize
the mean absolute error between the predicted scores and
the true scores. We then use the resulting regression model
as our performance predictor.

The performance validator (Section 2) is implemented
analogously, except that we use a gradient-boosted decision
tree [4] as prediction model. We compute additional features
based on Kolmogorov-Smirnov tests between the model out-
puts on the corrupted serving data and the held-out test data
during model training

5 RELATED WORK

Applying data management techniques in the ML space is
a field with growing interest in recent years [12, 19, 21, 22,
24, 25]. Several solutions were proposed for validating ML
models and their predictions. Most of these originate from a
statistical ML or a data management perspective.

The consequences of a general shift in the joint distribu-
tion of features and labels are virtually impossible to predict
or mitigate. For an extreme case, consider data that was
generated with an adversarial intent or data from a distri-
bution that may not even share support with the source
distribution. Hence, methods that emphasize statistical rigor
usually start with distributional assumptions on the nature
of the dataset shift [28]. Examples include label shift, where
the marginal label distribution p(y) changes while the condi-
tional feature distribution p(x|y) remains constant [9, 13, 31],
and covariate shift, where p(x) changes while p(y|x) remains
constant [2, 27, 29]. Such assumptions often seem inapt to
describe practically relevant data changes for engineers, such
as errors originating from software bugs in preprocessing

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

pipelines, unexpected missing values, or a mix of covari-
ate and label shifts in subsets of the data. Moreover, the
proposed methods often limit themselves to adapting a par-
ticular model or learning paradigm.

Approaches from the data management community [10,
19, 23] often require manual tuning, detailed knowledge
of model internals and features, or do not directly address
the problem of validating model predictions. For instance,
Google’s TFX platform [1] offers skew detection capabilities
for input data, but requires the end user to manually select an
appropriate distance function and a corresponding threshold
for particular features.

On a related note, there is a growing body of work on
model diagnosis [6] and model unit testing for neural net-
works [3, 15, 18], which aims to find edge cases and inputs
that crash the model. We proposed “unit tests for data” [23] in
ML pipelines, but did not connect these tests to the prediction
quality of ML models. Wang et al. propose “Uni-Detect” [30],
an approach for automated error detection in tabular data,
but do not quantify the errors’ impact on the predictions of
ML models.

6 EVALUATION

Overview. We experimentally evaluate our performance
prediction and validation approaches under known and un-
known shifts and errors (Sections 6.1 & 6.2) and compare
them to several baselines. Afterwards, we demonstrate that
our approach also works for models trained by automatic
machine learning (AutoML) methods in Section 6.3.

Datasets. We experiment on six publicly available datasets
from different domains. (1) The income! dataset contains
48,842 records about adult income data, and the target vari-
able denotes whether a person earns more than 50K dol-
lars per year or not. (2) The heart* dataset contains 70,001
records about cardiovascular diseases, and the target vari-
able denotes the presence of a heart disease. (3) The bank®
dataset comprises of 45,212 records of bank customer data,
and the goal is to predict if a customer will subscribe a term
deposit. (4) The tweets* dataset comprises of 20,002 tweets
and the target variable denotes whether or not a tweet has
trolling character (e.g., was intended as an insult). (5) The
digits® dataset comprises of 14,000 28x28 pixel images of
handwritten digits for the numbers 3 and 5. The task is to
correctly identify the digit in the image. (6) The fashion®

!https://archive.ics.uci.edu/ml/datasets/adult
Zhttps://www.kaggle.com/sulianova/cardiovascular-disease-dataset
Shttps://archive.ics.uci.edu/ml/datasets/Bank+Marketing
4https://dataturks.com/projects/abhishek.narayanan/
Dataset%20for%20Detection%200f%20Cyber-Trolls/
Shttp://yann.lecun.com/exdb/mnist/index.html
®https://github.com/zalandoresearch/fashion-mnist

https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://dataturks.com/projects/abhishek.narayanan/Dataset%20for%20Detection%20of%20Cyber-Trolls/
https://dataturks.com/projects/abhishek.narayanan/Dataset%20for%20Detection%20of%20Cyber-Trolls/
http://yann.lecun.com/exdb/mnist/index.html
https://github.com/zalandoresearch/fashion-mnist

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

dataset comprises of 14,000 28x28 pixel images of fashion
products for the categories “sneakers” and “ankle boots”. The
task is to correctly identify the category of the product in
the image.

We featurize the non-image datasets as follows: we stan-
dardize all numerical attributes, one-hot encode all categor-
ical attributes, and hash word-level n-grams of textual at-
tributes to a large sparse vector. We concatenate the encod-
ings of the attributes to obtain the final feature vector. We
apply this featurization via a scikit-learn pipeline to ensure
that all preprocessing methods are ‘fitted’ on the training
data only and applied to the unseen test data later. For ex-
perimental runs measuring the accuracy, we resample the
data to have balanced classes to make the scores easier to
interpret.

Models. For the majority of our experiments, we leverage
four popular classification approaches and treat them as

black box models:

e We train a logistic regression model’ refered to as Ir us-
ing five-fold cross-validation where we grid search over
regularization type and learning rate.

e We train a feed-forward neural network [5] refered to as
dnn comprised of two layers with ReLU activation and a
softmax output. We use five-fold cross-validation and grid
search over the size of the layers.

o We train gradient-boosted decision trees [4] refered to as
xgb. We use five-fold cross-validation and grid search over
the number and depth of the trees used.

e We train a convolutional neural network [5] refered to as
conv for the image classification tasks. This network uses
ReLU activations and drop-out regularization, and starts
with two convolutional layers of size 32 and 64, applies
max pooling, followed by a dense layer of width 128 and a
softmax output.

Types of errors and dataset shifts. We experiment with
six different types of errors that we introduce into the unseen
serving data, some of which belong to the top problems
commonly encountered in industrial ML pipelines [3].

Missing values in categorical attributes. We randomly choose
1 to n (with n being the maximum number of categorical
columns) categorical columns and introduce missing values
at random into these columns.

Outliers in numeric attributes. We randomly choose 1 to n
(with n being the maximum number of numeric columns)
numeric columns. For each column, we corrupt a fraction
of its values by adding gaussian noise centered in the data
point with a standard deviation randomly scaled from the
interval of 2 to 5.

https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.SGDClassifier.html

Sebastian Schelter, Tammo Rukat, and Felix Biessmann

Swapped column values. We choose different pairs of cate-
gorical and numerical columns and randomly swap a given
proportion of the contained values between the columns.

Scaling. We randomly scale a subset of the values by 10, 100
or 1000. This perturbation mimics cases where the scale of
an attribute is accidentally changed in preprocessing code
(e.g., because a developer accidentally changes the code to
record durations in milliseconds instead of seconds).

Adversarial text. This perturbation is designated for the tweets
dataset exclusively and simulates an adversarial attack. We
assume that the attackers try to fool our classifier by chang-
ing the spelling of their trolling tweets to ‘leetspeak’, e.g., by
converting the string “hello world” into “h3110 w041d”.

Image noise:. We add noise sampled from a gaussian with zero
mean and a variance randomly chosen between [-0.5,0.5] to
a proportion of the input images.

Image rotation:. We rotate a proportion of the input images
by randomly chosen angles.

Model-entropy based missing values.: We use an active learn-
ing based approach as a more challenging variant of missing
values. We rank all samples by how difficult they are to clas-
sify and discard values from ‘easy’ samples for which the
classifier was certain about its prediction. We use 1 — pyax
where ppay is the maximal probability assigned to a class for
a given data point [26] as uncertainty measure.

If not described otherwise, we generate the synthetically
corrupted data for our experiments as follows. We repeat-
edly choose a random selection of columns from the input
dataframe, randomly sample the fraction of cells to corrupt
and repeat this procedure 100 times per column and error
combination. Thereby we typically generate a few thousand
corrupted datasets to train a performance predictor.

We make the source code as well as serialized datasets and
models of our experimental evaluation publicly available.?

6.1 Prediction Score Estimation

In the following, we evaluate our performance prediction
approach on known and unknown shifts and errors.

6.1.1 Prediction Score Estimation for Known Shifts. For
every experimental run, we randomly partition a dataset into
one partition designated as source data and another disjoint
partition designated as serving data. Next, we decide for a
particular type of data error and train one of our black box
models as well as the performance predictor on the source
data as described in Section 3. Afterwards, we apply error
generators to the unseen serving data with randomly sam-
pled probabilities and thereby create randomly corrupted
versions of that data, injecting the expected type of errors.

8https://github.com/schelterlabs/learning-to-validate-predictions

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://github.com/schelterlabs/learning-to-validate-predictions

Learning to Validate the Predictions of Black Box Classifiers

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

0.087— —
—reome — oo e e
—— heart — tweets o
5 0.04 ©0.06
£ b}
py £0.04
S0.02 2
[e]
2 # && . 20.02 | “‘
o) . ©
sbalye pspel

g
o
S

0.00

—— fashion
A < 0.04 o

50.04 o

£ o

v o)

Q -) \

5002{ T 20.02 \ M

° - o

g [=Tm! B ‘ ‘
‘ © BUOL A A © ‘
= 0.00{++ 17T T 0.00

(a) Prediction error for the accuracy of
alogistic regression model with missing
values, outliers, swapped columns and
scaled values (and adversarial examples
in the tweets dataset).

(b) Prediction error for the accuracy of
a neural network on serving datasets
with missing values, outliers, swapped
columns and scaled values (and adver-
sarial examples in the tweets dataset).

(c) Prediction error for the accuracy of (d) Prediction error for
gradient-boosted decision trees on serv-
ing datasets with missing values, out-
liers, swapped columns and scaled val-
ues (and adversarial examples in the

tweets dataset).

the accuracy of a convo-
lutional neural network
on noisy and rotated im-
ages in the fashion and
digits datasets.

Figure 2: Estimation of the prediction quality in the presence of known types (but unknown magnitudes) of
errors in the serving data. We evaluate four different models on six different datasets and seven different errors

and shifts.

We then have our performance predictor estimate the score
on the unseen corrupted data, and compare this estimate to
the actual score (which we can compute in this virtual setup
because we have access to the true labels). We run experi-
ments to predict both accuracy as well as the area under the
ROC curve (AUC); We measure the prediction error using
the absolute error, which is easy to interpret. We only plot
results for the prediction of accuracy as the results for AUC
do not significantly differ from these.

Figure 2 demonstrates the results of the corresponding
experiments with respect to the prediction of the classifiers’
accuracies. We plot the distribution of the absolute error of
our performance predictor with respect to the accuracy of
the black box model on the serving data. We run four dif-
ferent experiments per dataset and model, injecting missing
values, outliers, column swaps and scaling errors for the
income, heart and bank datasets. Additionally, we apply the
adversarial attack on the tweets dataset. We repeat this ex-
periment for the logistic regression model (Figure 2(a)), the
neural network (Figure 2(b)) and gradient-boosted decision
trees (Figure 2(c)). We also test the performance prediction
for the convolutional neural network, where we inject noise
and rotation errors into the digits and fashion datasets (Fig-
ure 2(d)).

In the majority of cases the median absolute error is not
larger than 0.01 with low variance which means that our
approach is able to reliably predict the prediction quality
of the models on the unseen, corrupted serving data. We
observe that the effect of scaled numerical input columns is
harder to predict for all three models on the bank dataset,
where we encounter a higher variance. Additionally, our
approach also has problems with predicting the performance
of the neural network in the presence of outliers on the bank

dataset. The performance prediction for the convolutional
neural network works better on the digits dataset with a very
low median absolute error than on the fashion dataset where
the median absolute error is closer to 0.02.

In general, our predictions are close to the true perfor-
mance score on the unseen data in this scenario, where
we know the type of error that might occur in our serv-
ing data. We thereby enable end users to distinguish cata-
strophic model failures (such as cases where the model tends
to randomly guess) from cases where the performance is
only slightly affected by the shifts in the data.

6.1.2 Prediction Score Estimation for Mixed and Unknown
Shifts. In general, we cannot assume that we know the type
of error that we might encounter in real world data. We emu-
late this scenario of unknown or partially observed errors by
blending a fraction of samples affected by a given error into
the serving data for evaluating our performance predictor.
In this setup, our performance predictor will be trained on
an error distribution different from the one present in the
serving data. We choose a random numerical column and a
random categorical column for each model and dataset com-
bination. All error types are applied to the serving dataset.
But in contrast to the previous experiments we only perturb
a fraction of the source data used for training the perfor-
mance predictor. If that fraction is 0, then no data point in
the source data is affected by a given error type, and the
performance predictor has not seen this error type in its
training data. We include swapped columns, scaling errors,
outliers, missing values and model entropy-based missing
values as potential error types for this experiment.

Figure 3 shows the results for predicting the performance
of linear and nonlinear models in this scenario. We observe
that the prediction error for the linear model increases with

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

the amount of unknown errors’®, while the prediction quality
of nonlinear models can be predicted with low variance even
in these cases. This indicates that our approach is able to
generalize from known errors.

Linear model Nonlinear models
95th percentile 95th percentile
0.10{ — median 0.10 —— median
% 5th percentile E(J 5th percentile
Z0.05{—— Z0.05

0'0(9.00 0.25 0.50 0.75 1.00
fraction of unknown errors

0'0(9.00 0.25 0.50 0.75 1.00
fraction of unknown errors

Figure 3: Performance prediction quality for linear
and non-linear models under increasing magnitudes
of unknown error types.

6.1.3 Sensitivity of the Predictor to the Sample Size. Next,
we investigate the sensitivity of our approach to the size
of the held-out data |Dieqt|, (Algorithm 1), which we need
to generate synthetically corrupted examples for the per-
formance predictor. In an online serving setting, we would
want the performance predictor to be quickly retrainable
from small batches of observed data. We repeat the experi-
ments with missing values in the income dataset and with
outliers in the heart dataset from Section 6.1.1, and vary the
size of the held-out data D;es between 10, 50, 100, 250, 500,
750, 1000, and 1500 data points. We train performance predic-
tors for different models based on this sample data, and plot
the the resulting MAE as well as the 10th and 90th percentile
of the distribution of the absolute error in Figure 4. In all
cases, we observe that the performance predictor achieves
low prediction errors after having access to a few hundred
examples.

6.2 Comparison against Task-Independent
Dataset Shift Detection Methods

In the next set of experiments, we evaluate the quality of
our performance validation approach, which aims to decide
whether the prediction quality on a (potentially) corrupted
serving dataset is within a given threshold of the predic-
tion quality that the classifier achieved during evaluation
on the test set at the training stage (Section 2). We compare
our approach against the following three task-independent
baselines.

e Relational shift detection (REL): This baseline approach
applies shift detection techniques to the raw input data
instead of the model outputs. We apply multiple univariate
shift detection tests between the columns of the training

9We attribute the bad performance of the linear model to numeric overflows
in the SGDClassifier model that are caused by the scaling perturbations.

Sebastian Schelter, Tammo Rukat, and Felix Biessmann

missing data in income (Ir)

missing data in income (dnn)

missing data in income (xgb)

—— 10th percentile —— 10th percentile —— 10th percentile
0.2 ---- MAE 0.2 ---- MAE 0.2 ---- MAE
—— 90th percentile —— 90th percentile —— 90th percentile
w w w
< < <
=0. =01 =01
0'00 500 1000 0'00 500 1000 0'00 500 1000
size of Diest size of Dyest size of Diest
outliers in heart (Ir) outliers in heart (dnn) outliers in heart (xgb)
—— 10th percentile —— 10th percentile —— 10th percentile
0.2 ---- MAE 0.2 - MAE 0.2 - MAE
—— 90th percentile —— 90th percentile —— 90th percentile
w w w
< < <
=01 =01 =01
P __—
0.0/ 0.0 0.0
0 500 1000 0 500 1000 0 500 1000
size of Dyest size of Dyest size of Dyest

Figure 4: Sensitivity of the performance predictor to
the sample size |Dyes| for different errors and models
on the income and heart datasets.

and serving data (Kolmogorov-Smirnov tests for numeric
columns, and Xz-tests for categorical columns).

o Black Box-Shift Detection (BBSE) for assigned class proba-
bilities from Lipton et al. [13], which evaluates a Kolmogorov-
Smirnov test between the softmax outputs of the black box
model on the test and serving data.

o Black Box-Shift Detection (BBSER) [20] for predicted classes,
which evaluates a y2-test between the counts of the pre-
dicted classes of the black box model on the test and serv-
ing data.

Note that REL directly compares statistics of the raw input
data and serving data to detect whether the data distribution
has changed, and is thereby independent of the applied black
box classifier. Following [20], we compare the resulting p-
value of each test to 0.05 to decide about the test outcome
and apply Bonferroni correction to account for multiple tests
in case of the REL baseline. For our approach, we train a
performance validator (as described in Section 2), refered to
as PPM, and report its decisions as well. We record how well
each approach predicts whether the accuracy on the serving
data is within the given threshold and report the resulting
F1scores, which trade off both the precision and recall of the
approaches.

6.2.1 Mixtures of Known Shifts and Errors. In the first set
of experiments, we train the performance validator using
randomly chosen mixtures of four different error types (miss-
ing values, outliers, swapped columns and scaling errors)
and apply a randomly chosen mixture of the same error types
(with different probabilities) onto the serving dataset. Next,
we have our performance validator as well as the three base-
line methods predict whether the accuracy drops less than a
given threshold compared to the accuracy on the held-out
test set. We run this experiment for the logistic regression,

Learning to Validate the Predictions of Black Box Classifiers

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

t=0.03 t=0.05 t=0.1
. PPM BBSE-h - PPM BBSE-h - PPM BBSE-h
10 e BBSE mEm REL 1.0 mem BBSE mEm REL 10 e BBSE mEm REL
08 08 08
o (=} o
R06 R 06 R06
—~ — ~—
T o4 o o4 o4
02 0.2 0.2
00 [o @ v S £ X x5 X7 00 @ [) + Yo o X x5 xT 0.0 [@ @ 4 P £ X x5 x7
Ec ES ET ST 5§ SE 55 £5 SE E- ES ET §T $9 §E §Z 55 SE E- £E3 ET ST 55 §E S 59 SE
g= g% 8§ &% 22 23 57 52 &3 g= g8 g5 £7 22 £8 o7 52X 3@ g= g% g§ &% £z 23 57 52 &3

(a) Validation for a 3% threshold.

(b) Validation for a 5% threshold.

(c) Validation for a 10% threshold.

Figure 5: F1-Scores for performance validation for mixtures of unknown shifts and errors.

neural network and gradient-boosted tree models, on the in-
come, heart and bank dataset. We find that our performance
validator (PPM) outperforms the baselines in the vast major-
ity of cases, often by a wide margin with an F1-score between
0.8 and 0.9. BBSE only beats our approach in three cases: for
logistic regression on the income dataset with a 3% threshold,
for the neural network on the bank dataset with a 3% thresh-
old and for the neural network on the bank dataset with a
5% threshold. There is no clear second best approach as both
BBSE and BBSEh outperform each other in many cases (and
perform badly in other cases), while REL works poorly in
the majority of cases. In general, we observe that it becomes
easier for our approach to correctly predict the performance
with a larger threshold, (as the F1-scores grow for higher
thresholds). This indicates that the performance validator is
able to reliably identify catastrophic performance drops (e.g.,
with a 10% drop in accuracy).

6.2.2 Validation under Unknown Shifts and Errors. Next,
we evaluate how well the performance validation works un-
der unseen shifts and errors. We again use the setup from the
previous experiment, where we train on randomly chosen
mixtures of four different error types (missing values, out-
liers, swapped columns and scaling errors), but we evaluate
on three newly defined error types which are unknown to
our performance validator:

o Typos in categorical values: We introduce typos into a ran-
dom proportion of the values of a categorical attribute.

o “Smearing” of numerical attributes: We change a random
proportion of the values of a numeric attribute by a ran-
domly chosen amount between -10% to 10%.

e Flipped sign in numerical attributes: We multiply a random
proportion of the values of a numeric attribute by -1 to
change their sign.

We apply a randomly chosen mixture of the unseen error
types (with different probabilities) onto the serving dataset.
Next, we again have our performance validator as well as
the three baseline methods predict whether the accuracy
drops less than a given threshold compared to the accuracy
on the held-out test set. We run this experiment for the
logistic regression, neural network and gradient-boosted tree
models, on the income, heart and bank dataset. We evaluate
all approaches for thresholds of 3%, 5% and 10%.

We plot the results in Figure 5. We observe that PPM
predicts the performance very reliably in the majority of
cases, and again only fails to beat the baselines in three
settings: logistic regression on the income dataset with a
3% threshold, the neural network on the bank dataset with
a 3% threshold, and the gradient-boosted decision trees on
the heart dataset with a 10% threshold. In many cases, the
F1 scores achieved by our approach in this setting are even
better than in the setting with the known errors, which we
attribute to the fact the unknown errors under test here have
less drastic effects than some of the known errors, such as
the scaling errors, which we have been shown to be difficult
to handle in Section 6.1.1

Note that while the error types applied here are unknown
to our performance predictor, it is still be able to learn about
their effects from the known error types it has seen. We
attribute this to the fact that their impact on the predictions
of the black box model is similar to the impact of the known
errors. E.g., the impact of a typo in a categorical column is
identical to the impact of a missing value in that column,
as the feature map will produce a zero vector when trying
to one-hot encode the resulting value. The same is true for
the “smeared” numerical values: their effect might be similar
to gaussian noise added to the values for our outlier errors.
This experiment confirms our findings from Section 6.1.2
that our approach is able to generalize from known errors
to unobserved errors in many cases.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

. PPM s BBSE BBSE-h mm REL

F1 - Score
o o o -
5 o ® o

o
N

o
=)
TPOT
.03)
.05)
.10)

(t

.03)
.05)
auto-sklearn
.10)
TPOT
(t=
TPOT
(t=
=.03)
auto-keras
=.05)
=.10)
.03)
.05)
.10)

(t=

(t=

(t

(t

(t
Iarge-_convnet

(t
auto-keras

auto-sklearn
auto-sklearn
auto-keras

(t

(t
large-convnet

large-convnet
(t

Figure 6: Performance validation for black box models
trained by various AutoML methods in the presence of
mixtures of known shifts and errors.

6.3 Application to AutoML Models

6.3.1 AutoML Libraries. We experiment with a series of
models trained by three different automatic machine learning
(AutoML) libraries, which automatically decide on model
internals such as feature maps or ensembling techniques.

We have auto-sklearn [7] and TPOT [16] learn models for
the income dataset. Additionally, we have auto-keras [11]
conduct neural architecture search for a convolutional neu-
ral network to apply to the digits dataset. We again train our
performance validator using randomly chosen mixtures of
four different error types (missing values, outliers, swapped
columns and scaling errors for the income dataset; rotations
and noise for the digits dataset) and apply a randomly chosen
mixture of the same error types (with different probabilities)
to the serving dataset. Next, we have our performance valida-
tor as well as the three baseline methods predict whether the
accuracy drops less than a given threshold compared to the
accuracy on the held-out test set. We evaluate all approaches
for thresholds of 3%, 5% and 10%.

The results (plotted in Figure 6) are in line with our pre-
vious findings from Section 6.2.1: Our approach (PPM) out-
performs black box shift estimation (BBSE, BBSEh) as well

mixture of errors (income) mixture of errors (heart)

>0.85 5075
o e O e
e ’ £0.70 ¥
g $ 5 o
g0.80 e So.65
2 o % 0.60
So7s S &
8 055 .. .7

’ 8.70 0.75 0.80 0.85 ' %.5 0.6 0.7

true accuracy true accuracy

Figure 7: Prediction quality for black box models
trained and hosted via Google AutoML Tables on a mix-
ture of errors in the income and heart datasets.

Sebastian Schelter, Tammo Rukat, and Felix Biessmann

as multiple univariate tests on the raw input data (REL) in
the majority of cases, often by a wide margin. The BBSE
and BBSEh baselines beat our aproach only in two cases:
for TPOT for 3% threshold and for auto-keras with a 5%
threshold, yet only with a slight difference in F1 scores. REL
again performs very poorly (and was not applicable to the
image dataset used for auto-keras). The results confirm that
our approach is able to “tailor” the performance validator to
various black box models.

6.3.2 Google AutoML Tables in the Cloud. In this experi-
ment, we evaluate the applicability of our approach to black
box models hosted in the cloud. We train a classifier for the
income dataset, via the Google AutoML Tables cloud service
at https://cloud.google.com/automl-tables. Note that the re-
sulting model is trained and hosted in the cloud, and both
the applied learning algorithm as well as the model’s feature
map are unknown to us.

Next, we generate synthetically corrupted, held-out test
data, by applying a mixture of perturbations such as miss-
ing values, swapped columns, outliers and scaling errors.
We retrieve predictions for the corrupted test data and train
our performance predictor. Finally, we generate corrupted
serving data (again with a random mixture of the previous
perturbations), have our performance predictor predict the
accuracy of the black box model on this data, and retrieve
the predictions from the cloud model to compute the true
accuracies. The results in Figure 7 are in line with our find-
ings from Section 6.1.1: our approach predicts the resulting
accuracy scores well with an MAE of only 0.0038. We repeat
this experiment for the heart dataset, and achieve similar
results with an MAE of 0.0101.

7 CONCLUSION AND FUTURE WORK

We proposed a simple approach to automate the validation of
black box classifiers by estimating the model’s predictive per-
formance on unseen, unlabeled serving data. The approach
is complementary to existing techniques, such as schema
validation for model input data [3].

In future work, we intend to investigate the effects of more
error types, and aim to empirically study whether there is a
set of errors for training which generalizes to the majority
of real world cases. We would also be interested in better
understanding how the distribution of the model outputs
encodes the predictive performance. Additionally, we would
like to quantify the effects of our investigated error types for
selected models (e.g., neural networks) more formally.

https://cloud.google.com/automl-tables

Learning to Validate the Predictions of Black Box Classifiers

REFERENCES

[1] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo,

(8

[9

[10

[11

[12

[13
[14

(15

[16

[17

[18

(19

[20

]

]

—

]

[t

]

=

=

—

=

-

[t

Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc,
Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Akshay Naresh Modi,
Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy, Steven Euijong Whang,
Martin Wicke, Jarek Wilkiewicz, Xin Zhang, and Martin Zinkevich.
2017. TFX: A TensorFlow-Based Production-Scale Machine Learning
Platform. KDD, 1387-1395.

Steffen Bickel, Michael Briickner, and Tobias Scheffer. 2009. Discrimi-
native learning under covariate shift. JMLR 10, 2137-2155.

Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. SysML.
Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree
boosting system. KDD, 785-794.

Francois Chollet et al. 2015. Keras tensorflow.org/guide/keras.
Yeounoh Chung, Tim Kraska, Steven Euijong Whang, and Neoklis
Polyzotis. 2018. Slice finder: Automated data slicing for model inter-
pretability. SysML.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Sprin-
genberg, Manuel Blum, and Frank Hutter. 2015. Efficient and robust
automated machine learning. NeurIPS, 2962-2970.

Joseph M Hellerstein. 2008. Quantitative data cleaning for large
databases. United Nations Economic Commission for Europe (UNECE).
Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard
Scholkopf, and Alex J Smola. 2007. Correcting sample selection bias
by unlabeled data. NeurIPS, 601-608.

Nick Hynes, D Sculley, and Michael Terry. 2017. The Data Linter: Light-
weight, Automated Sanity Checking for ML Data Sets. ML Systems
Workshop @ NeurIPS.

Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Auto-Keras:
Efficient Neural Architecture Search with Network Morphism.
arXiv:cs.LG/cs.LG/1806.10282

Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M Patel.
2016. Model selection management systems: The next frontier of
advanced analytics. SIGMOD Record 44, 4, 17-22.

Zachary C Lipton, Yu-Xiang Wang, and Alex Smola. 2018. Detecting
and Correcting for Label Shift with Black Box Predictors. ICML.

Wes McKinney et al. 2010. Data structures for statistical computing in
python. Python in Science 445, 51-56.

Augustus Odena and Ian Goodfellow. 2018. Tensorfuzz: Debug-
ging neural networks with coverage-guided fuzzing. arXiv preprint
arXiv:1807.10875.

Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A.
Lavender, La Creis Kidd, and Jason H. Moore. 2016. Automating
Biomedical Data Science Through Tree-Based Pipeline Optimization.
EvoApplications.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Ma-
chine learning in Python. JMLR 12, Oct, 2825-2830.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepx-
plore: Automated whitebox testing of deep learning systems. SOSP,
1-18.

Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2018. Data Lifecycle Challenges in Production Machine
Learning: A Survey. SIGMOD Record 47, 2, 17.

Stephan Rabanser, Stephan Giinnemann, and Zachary C Lipton. 2019.
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
Shift. NeurIPS.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

Sergey Redyuk, Sebastian Schelter, Tammo Rukat, Volker Markl, and
Felix Biessmann. 2019. Learning to Validate the Predictions of Black
Box Machine Learning Models on Unseen Data. Human-in-the-Loop
Data Analytics workshop at SIGMOD.

Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas,
Stephan Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine
Learning Model Management. IEEE Data Engineering Bulletin 41.
Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel,
Felix Biessmann, and Andreas Grafberger. 2018. Automating large-
scale data quality verification. PVLDB 11, 12, 1781-1794.

S. Schelter, J. Soto, V. Markl, D. Burdick, B. Reinwald, and A. Ev-
fimievski. 2015. Efficient sample generation for scalable meta learning.
ICDE, 1191-1202.

D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Cre-
spo, and Dan Dennison. 2015. Hidden technical debt in machine
learning systems. NeurIPS, 2503-2511.

Burr Settles. 2010. Active Learning Literature Survey. Technical Report
1648. University of Wisconsin-Madison.

Masashi Sugiyama and Motoaki Kawanabe. 2012. Machine Learn-
ing in Non-Stationary Environments - Introduction to Covariate Shift
Adaptation. MIT Press.

Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al. 2017.
Dataset shift in machine learning. MIT Press.

Paul von Biinau, Frank C. Meinecke, Franz C. Kiraly, and Klaus-Robert
Miiller. 2009. Finding Stationary Subspaces in Multivariate Time Series.
Phys. Rev. Lett. 103. Issue 21.

Pei Wang and Yeye He. 2019. Uni-Detect: A Unified Approach to
Automated Error Detection in Tables. SIGMOD, 811-828.

Kun Zhang, Bernhard Schélkopf, Krikamol Muandet, and Zhikun
Wang. 2013. Domain Adaptation under Target and Conditional Shift.
ICML 28, 819-827.

	Abstract
	1 Introduction
	2 Overview & Problem Statement
	3 Approach
	4 Implementation
	5 Related Work
	6 Evaluation
	6.1 Prediction Score Estimation
	6.2 Comparison against Task-Independent Dataset Shift Detection Methods
	6.3 Application to AutoML Models

	7 Conclusion and Future Work
	References

