DuckDQ: Data Quality Assertions for Machine Learning Pipelines

Till Déhmen' Mark Raasveldt?> Hannes Miihleisen? Sebastian Schelter >

Abstract

Data quality validation plays an important role
in ensuring the proper behaviour of productive
machine learning (ML) applications and services.
Observing a lack of existing solutions for qual-
ity control in medium-sized production systems,
we developed DuckDQ: A lightweight and effi-
cient Python library for data quality validation,
that seamlessly integrates with scikit-learn ML
pipelines and does not require a distributed com-
puting environment or ML platform infrastructure,
while outperforming existing solutions by a factor
3 to 40 in terms of runtime. We introduce the
notion of data quality assertions, which can stop a
pipeline when quality constraints of the input data
or the model’s output are not met. Furthermore,
we employ stateful metric computations, which
greatly enhance the possibilities for post hoc fail-
ure analysis and drift detection, even when the
serving data is not around anymore.

1. Introduction

The development of machine learning (ML) models is a
highly experiment-driven process. Data scientists typically
leverage a combination of open source libaries like Pan-
das, scikit-learn, or tensorflow/pytorch for this, iteratively
develop their models using computational notebooks like
jupyter, and manage their data outside of relational database
systems.

Data validation for machine learning. While this ecosys-
tem provides data scientists with a high degree of flexibility,
there is a lack of best practices such as version control,
testing, and debugging. It is thus no surprise that many
real-world ML projects struggle with the transition from
development to production (Sculley et al., 2015). In contrast
to classical software systems, the behaviour of ML-based

'Fraunhofer FIT, Aachen, Germany 2Centrum Wiskunde & In-
formatica (CWI), Amsterdam, Netherlands > University of Amster-
dam, Amsterdam, Netherlands. Correspondence to: Till D6hmen
<till.doehmen @fit.fraunhofer.de>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

systems is mainly determined by data, and errors in training
or prediction data can lead to wrong and non-sensical be-
haviour if no safeguards are in place. To ensure the proper
operation of ML-based applications, code-tests are not suffi-
cient, the data itself must be checked for consistency with
assumptions made in training and prediction pipelines (Poly-
zotis et al., 2017). Features and target values for ML models
are typically extracted from heterogeneous data sources (e.g.
log files or crawled data) and transformed into a single table
via ETL/ELT processes, where data errors can easily be
introduced and go undetected if no safeguards are in place.

Shortcomings of existing approaches. Existing solutions
for validating ML data suffer from several disadvantages:
() Solutions like Deequ (Schelter et al., 2018) are explicitly
designed for very large datasets, and require cloud infrastruc-
ture as well as manual integration into training and serving
systems. Additionally, the dependency on the distributed
computing framework Apache Spark introduces large over-
heads for small- to medium-sized data; (i¢) Enterprise ap-
proaches like TensorFlow Data Validation (TFDV (Caveness
et al., 2020)) are tightly integrated with full-blown end-to-
end ML platforms such as Google TFX, and are difficult
to use “in the wild” outside of these platforms. (iii) Fi-
nally, Python-based approaches like great_expectations' or
hooqu? are more lightweight, but not integrated with the ML
development process and exhibit low performance for vali-
dations (Section 3). In runtime-critical production settings,
this poses an unnecessary bottleneck for users wanting to
safeguard ML applications against data errors.

The case for DuckDQ. As a consequence, we propose
DuckDQ, a Python library to assist data scientists and data
engineers with equipping ML models with data quality
checks, without imposing the need for a machine learning
platform infrastructure or distributed computing environ-
ments. DuckDQ provides a novel integration of data valida-
tion into the popular ML pipeline abstraction of scikit-learn.
This allows data scientists to serialise “data assertions” to-
gether with a trained ML model, and execute them as part of
the prediction pipeline, in order to safeguard the model from
data errors. For the definition of data assertions, DuckDQ
adopts an established fluent API for data quality validation,

1https ://greatexpectations.io
https://github.com/mfcabrera/hooqu

https://greatexpectations.io
https://github.com/mfcabrera/hooqu

DuckDQ: Data Quality Assertions for Machine Learning Pipelines

known from Deequ’s data unit tests (Schelter et al., 2019b).
In contrast to existing solutions in the Python ecosystem,
DuckDQ heavily optimizes the execution of its validation
queries, which significantly reduces the runtime for data
quality validation across different computational backends.
It leverages the embeddable analytical database manage-
ment system DuckDB (Raasveldt and Miihleisen, 2019) for
efficient integration with the popular Pandas library and
scikit-learn pipelines. Furthermore, DuckDQ computes and
logs all validation metrics in a stateful manner. That allows
computing metrics across multiple prediction batches with-
out looking at the data twice or even needing the original
data around. An approach, which can greatly enhances the
opportunities for monitoring tasks (s. Section 2).

2. Overview of DuckDQ

In the following, we describe the design and implementation
of DuckDQ and discuss its integration with the Python-
based data science ecosystem.

Integration with scikit-learn pipelines. To facilitate the
usage of DuckDQ in the Python ML ecosystem, we inte-
grate DuckDQ with scikit-learn, one of the most popular
ML libraries for Python. Scikit-learn popularised a pipeline
abstraction, which allows users to chain up multiple data
preprocessing steps and model training/prediction into a
serialisable pipeline. Our DQPipeline module builds upon
this paradigm and adds the twist that both, input and out-
put of the pipeline can be automatically validated against
user-defined data quality constraints. In case of a failed
validation, the pipeline will raise a DataQualityException
(optional) and prevent the pipeline from returning results.
We call this mechanism “Data Assertions”, in an analogy to
assertions in software development.
DQPipelines can be used as a drop-in replacement for reg-
ular scikit-learn pipelines and all assertions will be auto-
matically evaluated whenever the ML pipeline is trained
and/or predictions are computed with the trained pipeline (s.
Figure 1).
inp_assert = Assertion (CheckLevel.EXCEPTION)

check date format and positive trip distance

.has_pattern("date_time",

e (\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})")

.is_positive ("trip_distance")

check median trip distance via external function

.has_quantile ("trip_distance",

0.5,
lambda x: x <= expected_dist())

outp_assert = Assertion (CheckLevel.WARNING)

check ratio of positives is less than 10%

.has_histogram values ("y",lambda x: x["1"].ratio < 0.1)

pipeline = DQPipeline ([
(’ feature_encoding’, Pipeline(...))
("clf’, RandomForestClassifier())],
input_assertion=inp_assert,
output_assertion=outp_assert)

model = pipeline.fit (X_train, y_train)

Training Prediction
Data Data

Training Notebook

Scikit-learn Pipeline Model Artifact

|:!| ______ :5 i Prediction

dos Ul &l P ' i Service
Metric
Repository

Figure 1. DuckDQ’s (DQ) scikit-learn ML Pipeline integration.

pandas

The code snippet above shows an exemplary pipeline, which
triggers an exception, when the date_t ime attribute does
not match the given pattern, the t rip_distance attribute
has non-positive values or when its 50th percentile is greater
than an expected distance (which is calculated via an ex-
ternal function). Furthermore, when more than 10% of the
model’s predictions are positive, it will generate a warning
message.

A model equipped with a data assertion can be serialized us-
ing the Python library dill and shipped to other systems, e.g.,
from a development to a production environment. Users can
thus equip their trained ML pipelines with integrated data
safeguards when deploying them, which raise an exception
or warning if data quality conditions are not met. Note that
the DuckDQ library and its Python dependencies need to be
installed on the serving system as well.

The following snippet shows an example of a user loading
the trained pipeline in a production environment and mak-
ing a prediction on live data, while triggering the output
assertion. The ratio of positive predictions is 14%, but it
should have been <10%.

model = dill.load(model_artifact_path)
predictions = model.predict (live_data)

Warning: Data quality validation failed. Details:
Output Check: WARNING

ComplianceConstraint (Histogram("y")): FAILURE (0.14)

Stateful computations for debugging and drift detection.
With each model training and prediction, we record meta-
data of the validation into the metric repository - a local
database. Besides validation results and individual metrics,
we record intermediate states of the metrics computation,
which entails that all metrics can be reconstructed and ag-
gregated across multiple training/prediction runs, without
requiring access to the raw data. This is particularly use-
ful for metrics like mean, standard deviation, and relative
frequency histograms, which, when fully computed can con-
ventionally not be merged across multiple data batches of
different sizes. In a resource-constrained environment, like
an IoT/edge device, it might not be desirable to hold raw
prediction data for a long period of time, on the other hand,
users might still want to retrieve aggregated metrics from
e.g. the previous day or week for monitoring and debugging
purposes. As intermediate states are typically much smaller

DuckDQ: Data Quality Assertions for Machine Learning Pipelines

than the raw data it is feasible to store them locally for a
longer period of time. This also opens up opportunities
for integrated drift detection, as summary statistics can be
tracked and compared easily across long periods of time,
covering hundreds of thousands of prediction runs, without
the requirement to store raw data locally or to process raw
data more than once. In summary, we deem stateful com-
putation of metrics in combination with a local repository,
as implemented in DuckDQ, to be a particularly useful ap-
proach for failure analysis and monitoring tasks. Stateful
metric computations are described in more detail in (Schel-
ter et al., 2019b).

DuckDB for efficient querying of DataFrames. For the
evaluation of data assertions, we leverage DuckDB. The
Python data science ecosystem is primarily centered around
Pandas DataFrames, which makes DuckDB (Raasveldt
and Miihleisen, 2019) a perfect fit for several reasons:
(i) DuckDB is an SQL engine, which allows us to ap-
ply battle-tested multi-query optimization techniques from
Deequ (Schelter et al., 2019b); (i4) DuckDB has been ex-
plicitly designed for tight integration with the Python Data
Science ecosystem. In particular, it allows us to register a
Pandas DataFrame as a virtual table, and to query it in a
zero-copy manner without significant performance overhead
compared to physical tables; (ii7) Furthermore, DuckDB is
an embeddable database engine, which does not have any ex-
ternal dependencies and can run seamlessly within a Python
process; (iv) DuckDB uses an efficient columnar-vectorized
query execution model which yields great performance ad-
vantages for analytical queries, compared to native Pandas
DataFrame operations and row-oriented relational database
backends.

Architecture. DuckDQ’s core library consists of (i) a
verification logic component, and (ii) a computational
engine component, which can be equipped with different
execution engines (Figure 2). We implemented an SQL-
based DuckDB engine and factored out generic parts to a
database-agnostic SQL-engine. As a side effect, this engine
can be utilized for general-purpose data quality validation
on other SQL-based RDBMS?.

DuckDQ’s engines map data quality constraints from
the verification logic to internal operators, which define
how the queries to the database are built. Inspired by
Deequ (Schelter et al., 2019b), there are two different kinds
of operators: 1.) Scan-sharing-operators and 2.) Group
scan-sharing-operators. Scan-Sharing operators are the
primarily used type, covering about 90% of all constraints.
They define a set of aggregations (e.g., the mean-operator
leverages sum and count), optionally combined with a
row-filter (CASE WHEN. . .). All scan-sharing operators

3Currently, all databases supported by the SQLAlchemy
(https://www.sglalchemy.org) connector.

[Sklean Pipeline API] [Generic Quality Validation API]

Verification Logic

SQLAlchemy

Metric
Reposito

DuckDB

Storage &

Figure 2. System architecture of DuckDQ.

can be executed within a single table scan. Hence, expensive
repetitive table scans are avoided. Group-scan-sharing
operators define aggregations over grouped data and allow
for the sharing of scans for all operators that require the
same grouping. An example of such an operation is the
calculation of the uniqueness of a column.

3. Evaluation

In order to validate our design decisions regarding runtime
efficiency, we compare DuckDQ against three other Python-
based data quality validation frameworks* mentioned in
Section 1: PyDeequ, hooqu and great_expectations (Gr-
Exp.). It is to note that all experiments were conducted on a
conventional desktop machine with an Intel i7 8-Core CPU
and 32GB DDR4 RAM.

45 50 Runtime in s

[} 5)
S Y s

crexp. 77 s & Data Transf
7] Startup ata Transfer|
hooqu ':,1‘84 [_] validation

DuckDQ {_J0.69

Figure 3. Runtimes for data validation on a Pandas DataFrame,
with approx. 3M rows and 8 realistic quality constraints. DuckDQ
outperforms compared solutions by factor 3.

Real World Data. First, we use a medium-sized real-world
dataset with approximately 3M rows and ten columns from
a hotel recommendation use case’. We read data from the
CSV file into a Pandas DataFrame, as it would be typically
done. Then we pass it to the respective systems and start a
data quality validation with five completeness constraints
on four numeric columns and one string column, as well
as five uniqueness constraints on each of the remaining
columns (s. Figure 3). PyDeequ shows a significant over-
head due to the initialization of Spark and the data transfer
from Pandas to Spark DataFrames. Also, the subsequent

*Since TDFV follows a different API and design than the other
tools, we could not find a fair way to compare it to the others.

Shttps://www.kaggle.com/c/
expedia-hotel-recommendations/data

https://www.sqlalchemy.org
https://www.kaggle.com/c/expedia-hotel-recommendations/data
https://www.kaggle.com/c/expedia-hotel-recommendations/data

DuckDQ: Data Quality Assertions for Machine Learning Pipelines

-A- Prediction /9
5004 ~*- Gr.Exp. //
-6~ Hooqu Fa
—— DuckDQ w/o Scan Sharing S S
4001 —%— DuckDQ S/
0 Ky
o /
£ 300 / .
g o/
€ 5004 e 0

N
o
S
®
\
*

=
o
Is]
\
N\
X
\

ST -A
- -
== o ———
04 F¥—F——— = g - - —
10000 100000 1000000 2000000 5000000

Number of Rows

—-A- Prediction

—%- Gr.Exp.

-6~ Hooqu

—— DuckDQ w/o Scan Sharing
—¥— DuckDQ

40

30

Runtime (s)

10 A

2 4 8 16 32 64 128 256 512
Number of Features

Figure 4. Runtime of data quality validation by number of rows (left), and runtime of data quality validation by number of features (right).

validation is slower compared to the other systems, which
confirms that the scalability of Deequ comes at large costs
on small- to medium-sized data. The libraries hooqu and
great_expectations, which both use Pandas to compute the
required data summary statistics, show runtimes between
1.84s and 4.68s, respectively. DuckDQ shows a roughly
3-fold lower execution time at 0.69s.

Varying Number of Rows/Attributes. In a second exper-
iment, we investigate the runtime properties of DuckDQ
relative to the size of the dataset and the number of attributes
to be checked. We use a built-in function of scikit-learn to
generate different regression datasets with [0.1M — 5M |
rows and [2 — 512] attributes and evaluate three simple
constraints on each attribute with each of the libraries. Py-
Deequ was excluded from the comparison due to excessive
runtime - instead, a small ablation study was included with
a version of DuckDQ that does not use the scan sharing
optimization. For comparison, the runtime of a linear re-
gression batch prediction for the same dataset was included.
The left side of Figure 4 illustrates the runtime over dif-
ferent dataset sizes while keeping the number of validated
attributes fixed at 512. It is observed that the runtime of
hooqu and great_expectations grows steeply with the num-
ber of rows, far exceeding the prediction runtime, while
the validation runtimes of both versions of DuckDQ stay in
the same order of magnitude as the bare prediction runtime.
This can be attributed to the fact that great_expectations and
hooqu rely on Pandas to determined the required summary
statistics, while both DuckDQ versions leverage DuckDB
to compute the same.

When increasing the number of attributes, and keeping the
dataset size fixed at 0.1M (right side of Figure 4), one can
observe the effect of the scan sharing optimization. The
runtime of hooqu, great_expectations as well as DuckDQ
w/o Scan Sharing growth linearly with the number of at-
tributes, while the DuckDQ execution time, again, stays
in the same order of magnitude as the prediction runtime.

That is because DuckDQ requires only one full data scan to
determine all metrics, while great_expectations and others
require n = number_of _attributes scans.

In summary, we find that by using well-chosen optimization
techniques and by leveraging the analytical database engine
DuckDB, we can increase the efficiency of Pandas-based
data quality validation between 3- and 40-fold compared to
existing solutions, without requiring distributed computing
environments or any additional data roundtrips.

The source code of DuckDQ and the experiments are pub-
licly available © 7.

4. Conclusion

We presented DuckDQ, a lightweight Python library to safe-
guard production ML models against data errors, e.g. when
running ML prediction pipelines in a Python-based web
server backend. We showed that existing solutions intro-
duce a major bottleneck in such pipelines for datasets > 100k
rows and >64 attributes, while DuckDQ’s validation run-
time stays in the same order of magnitude as the prediction
runtime. DuckDQ is particularly well suited for medium-
sized use cases in resource-constrained environments, where
distributed computing is not an option and/or ML platform
infrastructure is not available. It features seamless integra-
tion with the Pandas data science ecosystem and offers a
range of opportunities for debugging and monitoring, ex-
ploiting the stateful computation of metrics, which allows
computing summary statistics incrementally across multiple
prediction-runs, without needing to keep raw data around.
We hope that this work can contribute to a more widespread
adoption of MLOps best practices, in particular for users
which have to work in resource-constrained environments
and/or with low operational costs, like citizen data scientists
or small companies/teams venturing into production ML.

*https://github.com/tdoehmen/duckdg
7https ://github.com/tdoehmen/duckdg—exp

https://github.com/tdoehmen/duckdq
https://github.com/tdoehmen/duckdq-exp

DuckDQ: Data Quality Assertions for Machine Learning Pipelines

Acknowledgements

This work has been partially funded by the European Union
Horizon 2020 Research and Innovation program through
the DEMETER project (Grant Agreement No. 857202).

References

Emily Caveness, Paul Suganthan G. C., Zhuo Peng, Neoklis
Polyzotis, Sudip Roy, and Martin Zinkevich. 2020. Ten-
sorFlow Data Validation: Data Analysis and Validation
in Continuous ML Pipelines. SIGMOD, 2793-2796.

Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and
Martin Zinkevich. 2017. Data management challenges in
production machine learning. SIGMOD

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB:
an Embeddable Analytical Database. SIGMOD, 1981-
1984.

Sebastian Schelter, Dustin Lange, Meltem Celikel and
Philipp Schmidt. 2018b. Automating Large-Scale Data
Quality Verification. PVLDB 11 (12).

Sebastian Schelter, Stefan Grafberger, and Dustin Lange.
2019b. Differential Data Quality Verification on Parti-
tioned Data. ICDE, 1940-1945.

David Sculley et al. 2015. Hidden technical debt in machine
learning systems. NeurIPS, 2503-2511.

