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ABSTRACT
Apache Mahout [1] is an Apache-licensed, open source library for
scalable machine learning. It is well known for algorithm imple-
mentations that run in parallel on a cluster of machines using the
MapReduce [2] paradigm.

Besides that, Mahout offers one of the most mature and widely
used frameworks for non-distributed Collaborative Filtering. We
give an overview of this framework’s functionality, API and fea-
tured algorithms.
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1. INTRODUCTION
Today’s internet users face an ever increasing amount of data,

which makes it constantly harder and more time consuming to pick
out the interesting pieces of information from all the noise. This
situation has triggered the development of recommender systems:
intelligent filters that learn about the users’ preferences and figure
out the most relevant information for them.

We believe that it is of high importance to provide high quality,
publicly available, open source software for implementing recom-
mender systems. Therefore, we present the collaborative filtering
framework of the Apache Mahout [1] library for scalable data min-
ing and machine learning. Whilst Mahout also provides algorithm
implementations to compute recommendations in batch [11] on a
MapReduce cluster, we put our focus on the functionality it offers
for developing single-machine recommendation systems.

In this work, we present Mahout’s flexible collaborative filtering
framework, which features a broad range of algorithm implemen-
tations and provides all necessary building blocks for real-world
recommender systems. Its main design goals consist of processing
efficiency, ease of use, integratibility with different datastores and
extensibility for both scientific and industrial usage.
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2. RECOMMENDERS AND DATA
At the heart of Collaborative filtering applications lie user-item

interactions. Mahout models those as a (user,item,value) triple in a
Preference object. For memory efficiency, only numeric identifiers
are allowed. The PreferenceArray encapsulates a set of interactions
belonging to either a user or an item.

The dataset holding all known interactions is represented by a
DataModel. This class provides a variety of convenient accessor
methods like getNumUsers() to find the number of users in the data
or getPreferencesForItem(itemID) to get all interactions for a par-
ticular item. Mahout offers several implementations that are able to
manage interaction data in memory, on disk, in relational databases
and key-value stores.

DataModel dataModel = new FileDataModel(new
File("movielens.csv"));

PreferenceArray prefsOfUser = dataModel.
getPreferencesFromUser(userID);

Listing 1: loading interaction data

The basic interface for all of Mahout‘s recommenders is mod-
eled in the Recommender class, which offers the functionality of
recommending items for a particular user (top-N recommendation)
as well as estimating the preference of a user towards an unknown
item (rating prediction).

In real-world usecases, one might not want to include all exist-
ing items when computing recommendations. This could be either
due to latency constraints or requirements of a business usecase
(e.g. some items might be temporarily out of stock). For such a
scenario, Mahout provides a customizable CandidateItemsStrategy
class, which is responsible for fetching all items that might be rec-
ommended for a particular user. Furthermore, a user can provide a
Rescorer to postprocess recommendations, e.g. to emphasize spe-
cial offers.

List<RecommendedItem> topItems =
recommender.recommend(userID,10);

float preference = recommender.
estimatePreference(userID,itemID);

Listing 2: top-N recommendations and rating prediction

3. NEIGHBORHOOD METHODS
Neighborhood methods form the most established and widely

used approach to collaborative filtering. They are also known as
k-nearest neighbor methods as they compute recommendations by



either finding users with similar taste or items that have been sim-
ilarly rated. Mahout provides implementations for both, the user-
based and the item-based approach. In a UserBasedRecommender
[9], a UserNeighborhood selects users that act as a jury for finding
items to recommend.

Due to its simplicity and scalability, the item-based approach
[8, 10] represents the most widely deployed recommendation al-
gorithm. It can present the items most similar to a given item (a
popular non-personalized way of recommending) and can provide
preferences for items as justification for recommendations. In Ma-
hout, the item-based approach is realized by an ItemBasedRecom-
mender together with a measure to compute similarities between
items, represented by an ItemSimilarity. Implementations for lots
of popular measures such Pearson correlation, cosine similarity,
Jaccard coefficient or loglikelihood ratio [3] are available. Simi-
lar to interaction data, precomputed item similarities can be loaded
from disk or a relational database.

ItemBasedRecommender recommender = new
GenericItemBasedRecommender(dataModel,
new PearsonCorrelationSimilarity(
dataModel));

List<RecommendedItem> similarItems =
recommender.mostSimilarItems(itemID,3);

Listing 3: computing most similar items

4. LATENT FACTOR MODELS
During the Netflix contest, another class of collaborative filter-

ing algorithms has become very popular. The so called latent fac-
tor models [7] are based on projecting the user-item interactions
onto a lower-dimensional feature space. In Mahout, the SVDRec-
ommender computes recommendations from such a projection.

The necessary decomposition of the interaction data is computed
by a Factorizer. Mahout offers implementations of standard mod-
els such as Simon Funk’s SGD [4], SVD++ [6] and parallel im-
plementations of weighted matrix factorization using Alternating
Least Squares [5, 12].

Factorizer factorizer = new
SVDPlusPlusFactorizer(dataModel,
numFeatures,numIterations);

Recommender recommender = new SVDRecommender
(dataModel,factorizer);

List<RecommendedItem> topItems = recommender
.recommend(userID,10);

Listing 4: recommendations using matrix factorization

5. EVALUATION
Mahout offers tools to evaluate the prediction quality of a recom-

mender on a random split of the data. For explicit feedback data,
a RecommenderEvaluator can compute the mean average error as
well as the root mean squared error. In the case of implicit feed-
back data, the RecommenderIRStatsEvaluator computes statistics
such as precision, recall, normalized discounted cumulative gain
and related measures.

RecommenderEvaluator eval = new
RMSRecommenderEvaluator();

RecommenderBuilder recoBuilder = ...
DataModelBuilder dataModelBuilder = ...
eval.evaluate(recoBuilder,dataModelBuilder,

dataModel,trainingRatio,testRatio);

6. FUTURE DIRECTIONS
Although we consider Mahout to be a versatile, mature frame-

work for building recommenders, there is still a lot of room for
improvements and extensions.

The evaluation framework should help users with finding param-
eters such as the number of nearest items or users to use in neigh-
borhood methods or the learning rate, regularization constant and
number of features for latent factor models.

Furthermore, Mahout should offer recommenders that integrate
valuable side information such as content attributes, temporal data
and social links. Such functionality would be extremely beneficial
for production usecases.

On the technical side, we would like to see support for out-of-
core operations for datasets that do not fit into main memory but
should still be managable by a single machine. Furthermore there
should be explicit support for realtime updates and folding-in new
users and items.
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