
Automating DataQuality Validation
for Dynamic Data Ingestion

Sergey Redyuk, Zoi Kaoudi, Volker Markl
Technische Universität Berlin

[sergey.redyuk,zoi.kaoudi,volker.markl]@tu-berlin.de

Sebastian Schelter
University of Amsterdam

s.schelter@uva.nl

ABSTRACT
Data quality validation is a crucial step in modern data-driven
applications. Errors in the data lead to unexpected behavior of
production pipelines and downstream services, such as deployed
ML models or search engines. Typically, unforeseen data quality
issues are handled via manual and tedious debugging processes
in a reactive manner. The problem becomes more challenging in
scenarios where large growing datasets have to be periodically
ingested into non-relational stores such as data lakes. This is even
worse when the characteristics of the data change over time, and
domain expertise to define data quality constraints is lacking.

We propose a data-centric approach to automate data quality
validation in such scenarios. In contrast to existing solutions,
our approach does not require domain experts to define rules
and constraints or provide labeled examples, and self-adapts to
temporal changes in the data characteristics. We compute a set of
descriptive statistics of new data batches to ingest, and use a ma-
chine learning-based novelty detection method to monitor data
quality and identify deviations from commonly observed data
characteristics. We evaluate our approach against several base-
lines on five real-world datasets, on both real and synthetically
generated errors. We show that our approach detects unspecified
errors in many cases, outperforms other automated solutions
in terms of predictive performance, and reaches the quality of
baselines that are hand-tuned using domain expertise.

1 INTRODUCTION
Data-driven decision making is becoming the norm in modern
enterprises and organizations, and requires maintaining and reg-
ularly updating large datasets, often collected in non-relational
stores such as data lakes. A critical step in these scenarios is data
quality validation, as the quality of the derived insights and deci-
sions crucially depends on the quality of the collected data [42].
Incorrect or missing data can lead to wrong business decisions
and problems in downstream data consumers, such as machine
learning (ML) models or search engines [1, 17, 43], and even crash
systems, e.g., due to null-pointers originating from missing data.
Common sources of errors are bugs in external data sources and
data preprocessing code (e.g., when a data engineer accidentally
changes a time measurement from seconds to milliseconds in a
data-producing pipeline). Such errors often corrupt large parts of
the data to ingest and can immediately lead to devastating conse-
quences, e.g., wrong predictions of ML models that consume the
data [37]. In this work, we focus on automating the detection of
such data quality issues.

We address the following real-world example scenario. Con-
sider a data engineering team at a retail company maintains a
search engine for products. To keep the search engine up-to-date,

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

it deploys a pipeline that regularly ingests and indexes external
product data from various heterogeneous sources, such as web
crawls, log files, key-value stores, or upstream data pipelines.
If a data source introduces errors in the data to ingest, such as
missing values or wrong encoding of strings, then the products
will not be indexed correctly or, even worse, cause the ingestion
process to crash. Such data issues are typically handled reactively:
the engineering team discovers data issues via alerts from devops
engineers, bug reports, and customer reviews. The data is then
manually fixed and back-filled. Handwritten code is added to the
data pipeline in retrospect to catch the observed type of errors
in the future [43].

In this paper, we propose an approach to automate data qual-
ity validation in scenarios where large partitions of a growing
dataset have to be regularly ingested into a common data store
such as a data lake. While relational databases enforce a schema
and integrity constraints for their data [13], many modern ap-
plications rely on non-relational data stores. Pipelines that do
not specify a particular schema or constraints on the data are
often much cheaper to operate in cloud environments (e.g., using
S3 as a distributed filesystem for storing the data partitions and
Apache Spark for processing them).

In contrast to existing work on fine-grained error detection [1,
17, 27, 29, 36, 47], we focus on scenarios where systems regularly
ingest batches of external data, and data errors corrupt a large
fraction of the batch [42] (Section 3). In the aforementioned retail
example, a few missing product reviews in a partition might not
cause issues in the downstream systems, as they are programmed
to handle that (e.g., by using missing value imputation strategies).
However, an unusually high fraction of missing values in the
review description is an indicator of a severe problem in one of
the external data sources.

We automate the detection of six types of errors (explicit and
implicit missing values, numeric anomalies, typos, swapped fields
for numeric and textual attributes) as follows: we leverage pre-
viously ingested data batches as “positive” examples of “accept-
able” data and use a machine learning approach to identify new
batches that significantly deviate from the previously observed
data. Specifically, we compute a set of descriptive statistics over
the ingested data and train a novelty detection ML model [30, 31]
to learn the characteristics of the “acceptable” data. We apply
the ML model on new data batches to ingest, in order to identify
potentially erroneous data batches that significantly differ from
previously observed data (Section 4).

Our approach provides several advantages over existing work.
First, it does not require domain experts to design and maintain
large numbers of rules [3, 20, 43]. Devising such rules and con-
straints is a very tedious and expensive process as the datasets
found in enterprises are typically large and messy [45], especially
if they originate from the integration of different external data
sources. Secondly, our approach is computationally efficient as
the descriptive statistics we apply can be computed in a single

pass over the data. Our novelty detection model has a low num-
ber of parameters to optimize. Finally, our automated approach
performs well in cases where the data characteristics change over
time, in contrast to rule- and constraint-based approaches [20, 43]
that require a manual redefinition of rules and constraints.

We evaluate our approach by comparing its predictive per-
formance to automated and hand-tuned variants of the follow-
ing state-of-the-art solutions: Tensorflow Data Validation [6],
Deequ [43], and statistical testing [32, 41]. Then, we evaluate the
sensitivity of our approach towards six types of errors (explicit
and implicit missing values, numeric anomalies, typos, swapped
fields on numeric and textual attributes) and the predictive per-
formance under various error magnitudes (1, 5, 10, 20, . . . , 80%)
in a controlled environment for datasets with synthetically gen-
erated errors. Finally, we evaluate the detection quality of our
approach over time, as (a) the size of the training set for the
novelty detection algorithm grows continuously, and (b) its data
characteristics change over time. In summary, we make the fol-
lowing contributions:

• We propose an approach to automate data quality validation
for data that is periodically ingested into non-relational stores.
In contrast to existing solutions, our approach does not re-
quire domain experts to define rules or labeled examples, and
self-adapts to temporal changes in the data characteristics (Sec-
tions 3 & 4);

• We discuss how to apply our approach efficiently via a novelty-
detection ML model trained on data quality metrics of the
data (Section 4);

• We evaluate our approach against existing baselines on five
real-world datasets with real and synthetically generated er-
rors. We find that our approach detects the unspecified errors
in many cases under varying error magnitudes, outperforms
other automated solutions in terms of predictive performance,
and reaches the ROC AUC score of baselines hand-tuned with
domain expertise (Section 5).

2 BACKGROUND
In the context of this work, we understand data quality validation
as the process of checking that the input data meet the needs
of a data-driven application or its underlying business process,
where these specific needs are either formulated explicitly with
the data standards and policies or assumed implicitly by the ap-
plication logic. The concept of data quality is broadly defined as
a measure of the fitness of the data to their intended uses and
purposes [11]. To identify how well the data fit for the intended
purpose, the wast body of knowledge [5] suggests several data
quality dimensions, such as data accuracy (the degree to which
the data correctly represent the real-world entity it models), com-
pleteness (the degree to which the data contain the necessary
attributes to model the entity), validity (the degree to which the
data are stored or represented in a format that is consistent with
the domain of values), and others. In practice, data quality is
assessed with a set of quantitative metrics that are associated
with the aforementioned data quality dimensions. In this section,
we briefly introduce the data quality metrics that we leverage in
our approach and the machine learning-related background for
novelty detection.
Data quality metrics.We consider several quantitative statis-
tics that can be used to identify data quality issues [18]: (𝑖) com-
pleteness - the ratio of non-missing values to the number of

records in the data; (𝑖𝑖) the number of distinct values; (𝑖𝑖𝑖) statis-
tics for numeric data types, such as maximum, mean, minimum,
and standard deviation, (𝑖𝑣) the ratio of occurrence for the most
frequent value, etc. These statistics are commonly used in data-
base engines, for data profiling and data quality validation [18] to
summarize data of interest and often act as a proxy for the state
of data quality. Furthermore, most of the statistics can be cheaply
computed in a single scan over the data, except for the number of
distinct values and the ratio of the most frequent value, which are
typically approximated with the hyperloglog and the count-min
sketches respectively [8, 12].
Novelty Detection. Novelty detection is a machine learning
technique that aims to identify new patterns and signals that
were not present in the training data [30]. It is closely related to
anomaly detection as both techniques look for patterns in data
that do not conform to the expected behavior [7]. The difference is
that anomaly detection assumes that outliers are already present
in the training data. In contrast, novelty detection is designed for
cases where we only have access to “positive” examples.

Novelty detection is a form of one-class classification [46]
(due to the absence of negative examples). Novelty detection
algorithms model the data and check whether previously unseen
data points resemble the characteristics of the modeled data (i.e.,
inliers) or deviate from the expected behavior (i.e., outliers). The
decision whether or not a new object (i.e., data point) is an outlier
against a set of known objects follows the continuity assumption
(i.e., two data points that are close in the feature space repre-
sent two objects with the resemblance in real life) and usually
focuses on distance measures. Common example algorithms in
this area are one-class SVMs [44] and isolation forests [26]. For
an in-depth overview of the one-class classification problem and
novelty detection algorithms, we recommend the reader to refer
to Tax [46] and Chandola et al. [7].

3 PROBLEM STATEMENT
In this section, we introduce the problem and its formal definition.
Overview. We address the problem of automating the valida-
tion of data quality on dynamic data without relying on domain
expertise (e.g., manually specified rules and labeled erroneous
data records). As outlined in the running example, we focus on
scenarios where data pipelines regularly ingest large batches of
potentially erroneous external data and face errors that corrupt
a large fraction of the batch.

State-of-the-art solutions in data quality validation typically
require domain knowledge to specify explicit rules, constraints,
patterns, or labeled examples to verify data quality [6, 18, 20, 43].
They, however, fall short in several cases: (𝑖) incomplete domain
knowledge (i.e., when data depict complex processes that even
domain experts cannot fully comprehend or when the domain
expert is unavailable at the given time), the solutions mentioned
above might perform poorly both due to false alarms and missed
errors as the specified set of rules or labeled examples are insuffi-
cient to capture potential errors; (𝑖𝑖) manual monitoring of data
pipelines to detect data quality issues or deployment of staging
environments for software testing are often too costly or time-
consuming, and are only conducted reactively; (𝑖𝑖𝑖) the charac-
teristics of the data might slowly change over time, which implies
that manually specified rules have to be constantly adapted and
maintained.

These challenges motivate an automatic approach to data quality
validation that does not rely on manually specified rules or la-
beled examples and self-adapts to changes in data characteristics.
Assumptions. For the given use case of the regular ingestion
of large batches of a growing dataset, we consider previously
observed and successfully ingested data partitions to be of “ac-
ceptable” data quality. This assumption is based on our experience
with real-world use cases: It is common in production to define
principal business and operational performance indicators and
monitor them carefully to evaluate business outcomes. For our
retail company running example, products that are placed in
the wrong category due to various errors lead to negative cus-
tomer reports or low service ratings, or via incident reporting and
tracking systems. This negative feedback serves as a proxy that
affects key performance indicators and catches the attention of
the responsible staff at some point in time. This, in turn, triggers
retrospective analysis. If devastating errors would have occurred
in the previously observed data partitions, they would have been
detected and fixed after a given time. If errors do not trigger a
negative response from the devops engineers or the business
after some period of time, we assume that the downstream task
is robust to them. Furthermore, existing error detection or data
quality validation methods require domain expertise. We focus
on real-world scenarios where domain expertise is not available
that, in turn, render the majority of data quality monitoring tools
inapplicable.
Formal problem statement. Given a structured dataset 𝐷 of
chronologically ordered partitions 𝑑1, . . . , 𝑑𝑡−1, each having do-
main 𝐴 = 𝐴1, . . . , 𝐴𝑀 , we have to predict upon the arrival of a
new partition 𝑑𝑡 whether this partition is of acceptable quality
or it is potentially corrupted w.r.t. a set of data quality metrics
𝑄 = 𝑄1, . . . , 𝑄𝐺 . We map this problem to a “one-class classifica-
tion” problem [46] where every partition 𝑑𝑖 is represented by a
feature vector x𝑑𝑖 = (𝑥1, . . . , 𝑥𝐺) ∈ R𝐺 of the data qualitymetrics
𝑄 that are computed on every attribute 𝐴𝑖 of that partition and a
boolean label𝑦𝑑𝑖 , which denotes whether the quality of the batch
is acceptable or not. However, we only have access to positive ex-
amples during training (hence the term “one class” classification).
The classification task is to decide whether a future batch 𝑑𝑡 can
be considered of acceptable quality (i.e., represents an inlier) or
deviates from the state of data quality of the previously observed
data batches (i.e., represents an outlier). The main challenge is
to model the “acceptable” data in an automated manner, without
external specification of the domain or examples of “erroneous”
data that have insufficient data quality.

4 APPROACH
Next, we discuss our approach for automating data quality val-
idation of newly observed data batches based on the problem
definition we presented in the previous section.
Overview. Figure 1 illustrates our approach: for every observed
partition 𝑑1, . . . , 𝑑𝑡−1, we model the features 𝒙𝑑𝑖 via a set of de-
scriptive statistics computed from the partition 1 . We train a
novelty detection model [38] on the resulting feature vectors that
learns the characteristics of “acceptable” data 2 . In order to check
a new data batch 𝑑𝑡 , we compute its feature vector 𝒙𝑡 via the cho-
sen descriptive statistics 3 . Next, we apply the novelty detection
model to label the new batch as acceptable or erroneous based
on the learned decision boundaries of the model 4 . With every
new data partition 𝑑𝑡 , we re-train the novelty detection model as
the training set grows with 𝑡 . Our method can be integrated into

data pipelines to raise alerts about potential degradation of data
quality automatically. Note that our approach does not rely on
domain expertise expressed in the form of rules, constraints, or
labeled data. Still, it remains valid in cases where the task defini-
tion is relaxed (e.g., domain knowledge is partially available or
some error types are expected).

kNN
Novelty
Detection

Training novelty detection algorithm on feature vectors

Computing
descriptive
statistics on
new
partition

Computing
descriptive
statistics

time t, today

 1

Previously observed data partitions Data partition to validate

t-1, yesterday

2

A B

‘X’ 4.2

‘Y’ 3.7

‘Y’ 3.9

A B

‘Y’ 3.3

‘X’ 4.1

‘X’ 4.4

A B

‘Y’ 4.9

‘Y’ 4.6

‘Y’ 3.6

A B

‘X’ 3.4

4.5

‘Y’ 12.

Completeness(A)
ApproxCountDistinct(A)
Completeness(B)
ApproxCountDistinct(B)
Maximum(B)
Minimum(B)
Mean(B)
StandardDeviation(B)

1.0
2.0
1.0
3.0
4.2
3.7
3.9
0.2

1.0
2.0
1.0
3.0
4.4
3.3
3.9
0.5

1.0
1.0
1.0
3.0
4.9
3.6
4.3
0.6

t-3 t-2

 3
Feature Vector

0.7
2.0
1.0
3.0
12.
3.4
9.9
3.8

Labeling new
feature vector,
alarm if outlier 4

Figure 1: Overview of the approach: for every observed
partition (gray tables), we compute a set of descriptive sta-
tistics as a feature vector (green, Step 1). We train a nov-
elty detection model that learns the characteristics of ac-
ceptable data (Step 2). For the upcoming data partition
(blue table), we compute its feature vector (Step 3) and let
the model decide whether it is similar to the previously
observed data partitions or not (Step 4). In this example,
a missing value in column “A” and a numerical outlier
in column “B” (red) affect the completeness metric and
numeric statistics of the feature vector 𝑥𝑡 . That, in turn,
raises an alert.

Descriptive statistics as features. For every attribute 𝐴 𝑗 of
the partition 𝑑𝑖 , we compute several quantitative measures that
correspond to the underlying data quality metrics (see Section 2):
• Completeness - the ratio of not-NULL values;
• Approximate count of distinctive values - the hyperloglog [12]
approximation of the number of distinctive values;

• Ratio of the most frequent value - the count sketch [8] approxi-
mation of the number of occurrences for the most frequently
repeated value, normalized by the batch size;

• Maximum, mean, minimum, and standard deviation for numeric
data types;

• Index of peculiarity [33] for textual data. Index of peculiarity
is based on the bi- and trigram tables of a textual attribute
and reflects the likelihood of the hypothesis that trigrams in
a given word are produced from the same data source that
produced the trigram table. This index is originally applied for
detection of typographical errors and facilitates detection of
typos in text or a “peculiar” occurrence of symbols in words.

𝐼 (T) = 1
2
(log𝑛(𝑥𝑦) + log𝑛(𝑦𝑧)) − log𝑛(𝑥𝑦𝑧) (1)

Equation 1 represents the index of peculiarity for a trigram
T = (𝑥𝑦𝑧), where 𝑛() denotes the number of occurrences
for a selected bi- or trigram in a textual attribute. Index of
peculiarity for a sentence is the root-mean-square aggregation
of indices for each trigram that this sentence contains.

Algorithm 1: Pseudocode of our approach.
Input: t, query raw data partition; k, the number of neighbors;
X, descriptive statistics for previously ingested data partitions;
contamination, the proportion of outliers in X;
dist, distance measure (e.g., Euclidean, Manhattan);
agg, distance aggregation strategy for k nearest data points.

Output: label, query data point t is inlier/outlier
1 Initialize array 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ; array 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ;
2 list 𝑛𝑢𝑚_𝑚𝑒𝑡 of metrics for numeric data types;
3 list 𝑔𝑒𝑛_𝑚𝑒𝑡 of metrics for other data types.
4 foreach attribute 𝐴 ∈ t do
5 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = 𝑛𝑢𝑚_𝑚𝑒𝑡 if type(𝐴) is numeric else 𝑔𝑒𝑛_𝑚𝑒𝑡

6 foreach metric ∈𝑚𝑒𝑡𝑟𝑖𝑐𝑠 do 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠.append(𝑚𝑒𝑡𝑟𝑖𝑐 (𝐴))
7 end
8 foreach 𝑥 ∈ X, 𝑡𝑟𝑒𝑒 = 𝐵𝑎𝑙𝑙𝑇𝑟𝑒𝑒 (X, dist) do

/* .getDist(𝑥, k) returns distances to k nearest
neighbors of x; agg(𝑎𝑟𝑟𝑎𝑦) is an aggregation
function such as mean, median, or max */

9 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (agg(𝑡𝑟𝑒𝑒.𝑔𝑒𝑡𝐷𝑖𝑠𝑡 (𝑥, k))
10 end

/* percentile(𝑥,𝑞) computes q-th percentile of x */

11 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = percentile(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, (1 − contamination))
/* outlier if aggregated distance from t to k nearest

neighbors exceeds 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, else inlier */

12 return agg(𝑡𝑟𝑒𝑒.getDist(𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠, k)) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

We concatenate attribute-level statistics into a univariate nu-
meric vector. Depending on the number of attributes and their
data types, the feature vector varies in length from one dataset
to another, where the length remains constant for partitions of
the same dataset. We normalize the resulting feature vectors to
a scale of 0 to 1. We chose these statistics based on two criteria:
(a) low computational complexity and (b) mapping to the error
types that often occur in real-world scenarios [47]. For a partic-
ular error type that we investigate, we consider statistics that
act as proxies for this error type more descriptive than others
in detecting data quality degradation. By a proxy we mean a
quantitative measure that is expected to change when a partic-
ular error occurs (e.g., numeric outliers are likely to affect the
statistical distribution of the attribute [18]). There is no single
metric that is more descriptive than others for all the given error
types. Preliminary results show that specifying only the descrip-
tive statistics that we expect to be changed when an error occurs
increases performance of our approach. This happens because,
in low-dimensional feature spaces, data points are more distinct
and distance-based methods perform better. However, assuming
“zero domain knowledge” and unknown error types, we cannot
control the choice of descriptive statistics in practice and, thus,
train our approach on all statistics. As discussed in Section 2,
most of these statistics can be computed in a single scan over
the data. Furthermore, we treat the sequence of feature vectors
that we collect over time (i.e., 𝑡𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑡 − 1) as separate data
points in the training set. Note that this modeling decision does
not preserve the order of these feature vectors.
Choice of the novelty detection algorithm. Given the na-
ture of the challenge at hand, i.e., “zero domain knowledge” or
unknown error types, only positive examples are available for
training. We thus choose one-class classification algorithms (i.e.,
novelty detection, see Section 2) as the main candidates for our
approach. In this work, we considered several candidates for the
novelty detection (ND) algorithm: Angle-based Outlier Detector

(ABOD), Feature Bagging ensemble for the Local Outlier Factor
(FBLOF), Histogram-base Outlier Detection (HBOS), Isolation
Forest, and the K Nearest Neighbors algorithm with both the
maximum and the mean distance aggregation scheme (KNN and
Average KNN, respectively) [30, 31]. To choose one particular
ND algorithm for our approach, we conduct preliminary experi-
ments on one dataset (Amazon Review, monthly data partition)
and three types of errors (explicit and implicit missing values
on all attributes, numeric anomalies on the attribute “overall”)
with 30% of synthetically introduced errors per data batch, in
order to determine which algorithm yields better predictive per-
formance on the one-class classification task (for more details,
see Section 5). We deliberately chose one dataset and a subset
of error types under investigation to avoid overfitting and the
selection bias for the evaluation procedure. Table 1 depicts the
predictive performance metrics (ROC AUC score [22]) for all the
ND candidates, as well as the break-down of the false positive
and false negative results. We report the ROC AUC measure
as it takes into account both the type-I and type-II errors. Fur-
thermore, it is insensitive to imbalanced datasets and preferred
in practice to other performance metrics such as accuracy or
F1 score. In our preliminary experiments, we computed other
performance metrics alongside the ROC AUC score. We noticed
that, since our evaluation scenario introduces a balanced case
where a negative counterpart exists for every positive example,
accuracy, F1 and ROC AUC scores report similar values. Based
on the preliminary results, we chose the k-Nearest Neighbor al-
gorithm with the mean aggregation scheme [38]. This algorithm
consistently outperformed other ND candidates on all three error
types and produced no false positive results, meaning that no
erroneous data batches were labeled as “acceptable”. The second
best-performing candidate is the Angle-Based Outlier Detection
method [23] that yielded comparable predictive performance yet
took an order of magnitude longer to train the model and infer
the labels.
Nearest-neighbor-based novelty detection. For every data
point in the feature space, the k-Nearest Neighbor (kNN) algo-
rithm calculates the average distance to its 𝑘 nearest neighbors
and learns a threshold to decide what data points to consider
inliers or outliers [2]. The kNN algorithm has a 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

hyperparameter that defines a ratio of data points that are as-
sumed to be incorrectly labeled as inliers. Hence they are labeled
as outliers in the training data. This scheme internally trans-
lates the one-class classification problem into a standard binary
classification problem where the examples of both classes are
present. The algorithm utilizes the Ball tree[35] space partition-
ing data structure - a binary tree where each node represents
a multi-dimensional hypersphere (i.e., ball) of partitioned data
points. This data structure provides properties that are useful for
efficient k-nearest neighbor search. All data points in the training
set are represented with distances to their 𝑘 nearest neighbors.
Depending on the design decision, these distances are aggregated
into a single numeric value with one of the available aggregation
strategies (e.g., mean, median, max). These numeric values are
used to learn a decision boundary to differentiate inliers and
outliers - a data point is considered an outlier if its aggregated
distance to k nearest neighbors exceeds the learned threshold.
The threshold is defined with the contamination hyperparameter
𝑐 that is translated into the (1 − 𝑐)th percentile of the array of
aggregated distance for the whole training set. Figure 1 provides
a pseudocode representation of the KNN algorithm.

ND Algorithm Error type AUC TP FP FN TN

One-class SVM
Explicit MV .9213 178 0 28 150
Implicit MV .9213 178 0 28 150
Anomaly .9691 178 0 11 167

ABOD
Explicit MV .9382 178 0 22 156
Implicit MV .9382 178 0 22 156
Anomaly .9691 178 0 11 167

FBLOF
Explicit MV .9353 178 0 23 155
Implicit MV .9382 178 0 22 156
Anomaly .9662 178 0 12 166

HBOS
Explicit MV .5814 60 118 42 136
Implicit MV .5505 60 118 42 136
Anomaly .9297 176 2 23 155

Isolation Forest
Explicit MV .7331 27 151 18 160
Implicit MV .5280 27 151 17 161
Anomaly .8764 146 32 12 166

KNN
Explicit MV .9325 178 0 24 154
Implicit MV .9325 178 0 24 154
Anomaly .9662 178 0 12 166

Average KNN
Explicit MV .9382 178 0 22 156
Implicit MV .9382 178 0 22 156
Anomaly .9719 178 0 10 168

Table 1: Results of the preliminary experiment on per-
formance evaluation for 7 novelty detection algorithms.
Three error types under investigation are explicit and im-
plicit missing values and numeric anomalies, depicted as
“Explicit MV”, “Implicit MV”, and “Anomaly” respectively.
We measure predictive performance with the ROC AUC
score (AUC), as well as the number of true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN) results, where FPs are associated with the misclassi-
fication rate and FNs - with the false alarm rate.

Gu et al. [15] present an extensive statistical analysis of nearest
neighbor algorithms and report that recent work on this family
of methods reaches state-of-the-art performance on novelty de-
tection tasks. Based on the preliminary experiment, we confirm
that the kNN novelty detection method performs on par with
other approaches or outperformed them, both in terms of the
predictive performance and execution time.
Modeling decisions. Next, we discuss several modeling deci-
sions for our kNN-based approach. We choose the Euclidean
distance metric as the most commonly used distance measure
for the R𝐺 feature space, and leverage the average distance to
𝑘 neighbors as an aggregation strategy. Based on preliminary
experiments, this decision led to consistently higher predictive
performance compared to other settings. Alternative strategies
are choosing the largest distance among 𝑘 neighbors or com-
puting the median. A systematic comparison of kNN algorithms
with different distance measures revealed that both the “largest”
and the “median” aggregation schemes happen to be less robust
than averaging in our setting.

We set the number of neighbors 𝑘 to aggregate the distance
measure to a low factor of five. The variation of this parameter
did not lead to significant changes in the predictive performance
during the preliminary experiments. The kNN novelty detection
algorithm is also parameterized with the contamination param-
eter [19]. This parameter defines a fraction of data points in
the training set to be misclassified as “positive” examples and
assumed to be outliers (i.e., false positives). We set the contamina-
tion parameter to 1% to keep the ratio of false positives minimal.

Dataset Flights FBPosts Amazon Retail Drug
records 147640 11157 1494070 541909 161297
part./attr. 31/9 53/14 1665/9 305/8 3579/6
part. size ∼2350 ∼105 ∼897 ∼1776 ∼45
N/C/T 1/4/0 4/3/2 2/1/4 2/5/1 2/2/1

Dataset Flights FBPosts

Errors, %
explicit/implicit missing
values, 8-38%

wrong encoding, 16%

incomplete datetime for-
mat, 95%

syntactic errors and trans-
lation, 18%

other syntactic/semantic
errors, 60%

Table 2: Characteristics of the datasets. The abbreviations
depict, in a direct order, the number of records in the
dataset, the number of partitions, the total number of at-
tributes, the average number of records in a data partition,
the number of numeric, categorical, and textual attributes.
We also report the real-world error types that two datasets
with the ground truth, Flights and FBPosts, contain.

We aim to minimize the number of data points in the training set
that are considered to be falsely classified as “inliers”. We base
this decision on our assumption that all the data partitions are of
“acceptable” quality, and no misclassification occurs. Preliminary
experiments showed that setting the contamination parameter to
1% leads, on average, to relatively higher predictive performance
compared to other values (including 0). Note that automated
hyperparameter tuning schemes are challenging in the case of
one-class classification problems, as we do not have labels for
both of the classes - acceptable and erroneous data.
Application to our example scenario. Based on the running
example, imagine the engineering team to apply the proposed
approach as a data quality monitoring tool to validate incoming
data batches before running data preprocessing and indexing jobs.
When a new data batch is examined and no alerts are raised, data
pipelines work without any difference and run the downstream
preprocessing and indexing job. In case an alert is raised, the team
starts a debugging process and applies further error detection and
correction strategies. If the method caught the erroneous data
batch correctly, the team fixes it and released the quarantined
batch back to the pipeline. In the case of false alarms, the data
is returned without alterations. The critical point is when the
erroneous data batch passes data quality checks and goes further
to the downstream pipeline without the errors being fixed (i.e.,
false positives). In this case, system crashes and degradation in
the predictive performance of the underlying ML model might
occur.

5 EVALUATION
In this section, we introduce our experimental setup and discuss
datasets and metrics for our evaluation. We conduct several ex-
periments. First, we compare the predictive performance of our
approach to automated and hand-tuned variants of the follow-
ing state-of-the-art solutions: Tensorflow Data Validation [6],
Deequ [43], and statistical testing [32, 41]. Then, we evaluate the
sensitivity of our approach towards six types of errors (explicit
and implicit missing values, numeric anomalies, typos, swapped
fields on numeric and textual attributes) and the predictive per-
formance under various error magnitudes (1, 5, 10, 20, . . . , 80%)

in a controlled environment for datasets with synthetically gen-
erated errors. Finally, we evaluate the detection quality of our
approach over time, as (a) the size of the training set for the
novelty detection algorithm grows continuously, and (b) its data
characteristics change over time.

5.1 Experimental Setup
We evaluate our proposed approach as follows. We experiment
with a relational dataset that is partitioned by a chosen tempo-
ral attribute (e.g., a creation timestamp for every record). This
allows us to simulate our target scenario of the daily ingestion
of new data batches in a data pipeline. For every data point that
corresponds to a particular day 𝑡 , we use the previously observed
partitions from timestamp 0 to 𝑡 − 1 as training data for our
approach. Then, we take both the partition 𝑑𝑡 and a corrupted
version 𝑑𝑡 as a counterpart, pass it to our model, and have it
predict whether the partition is of acceptable data quality or not.
Data partitions of acceptable quality are those that do not affect
KPIs and usually depend on the downstream ML task. However,
to decouple our experimental evaluation from the underlying
ML task, we consider partitions of acceptable data quality the
ones that do not contain any errors. We apply standard binary
classification metrics such as the area under the ROC curve (ROC
AUC score [22]) to evaluate how well the approach performs. We
also report confusion matrices to analyze misclassification and
false alarm rates.
Datasets. We experiment on five publicly available real-world
datasets from different application domains. For two of them,
we have access to both the erroneous and the cleaned versions
of the data [25]. The other three do not contain any errors, we
thus generate the errors synthetically [9, 14, 16]. For details, see
Table 2.
Datasets with ground-truth errors. The Flights1 dataset [25] con-
tains flight status data that is aggregated from 38 different data
sources (the airline and the airport websites, third-party web re-
sources). Each record represents a particular flight on a particular
day and includes attributes such as the scheduled departure/ar-
rival, the actual departure/arrival, and the departure/arrival gates.
FBPosts2 is a dataset of crawled Facebook posts for which we
have chronological information, as well as the erroneous and the
manually cleaned versions of the data (using OpenRefine [24]).
The dataset contains information about a sample of posts - their
title, content type, text, the week it was written, the domain
and the image URL, the number of likes, and the web page it
was crawled from. Missing values are the most common error
type for this dataset. Both datasets have an attribute that defines
the chronological order and enables splitting them into parti-
tions. Two variants of each dataset, the one with errors occurred
and the one where the errors are fixed, are provided. We utilize
these variants as partitions of acceptable data quality and their
corrupted counterparts for our evaluation scenario.
Datasets without ground-truth errors. Amazon Review [16] and
the Online Retail3 [9] are two retail datasets. The Amazon
Review4 dataset contains information about product reviews:
their ID, title, category, brand, sales ranking, and related products.
The Online Retail dataset contains historical transactional data
from aUK-based retailer. It includes the invoice number, customer

1http://lunadong.com/fusionDataSets.htm
2https://github.com/sergred/automating-data-quality-validation-data
3http://archive.ics.uci.edu/ml/datasets/Online+Retail/
4http://jmcauley.ucsd.edu/data/amazon/

ID, country, quantity, description, and the unit price of a product
being purchased. The third dataset contains information about
Drug Reviews5 [14]. It includes the name of a drug, medical
conditions this drug has been designed for, ratings and reviews,
the review date, and the number of users who considered this
review useful. All three datasets have a mix of numeric and
categorical attributes. They also contain an attribute that defines
chronological order and enables partitioning, but we do not have
ground-truth errors available for them.
Synthetic error types. In order to experiment with the datasets
that do not provide ground truth, we inject six types of synthetic
errors. We choose these types of errors because (a) they are
commonly encountered in real-world use cases in industry and
mentioned by many practitioners [6, 18] and (b) the majority of
them is used as example error types in the research field of error
detection [1, 27, 28, 34, 47]. We briefly describe these error types
below.
• Explicit missing values - empty cells in the data as a result of
wrong data collection or integration (e.g., left outer join of two
tables) or, simply, an optional field in a web form that was
never filled by the end-user and, thus, assigned as NULL while
crawling. We remove a fraction of the values of an attribute,
replacing them with NULLs;

• Implicit missing values - empty cells in the data that are en-
coded with values of an attribute’s data type that semantically
represent a missing value, e.g., a string ‘NONE’ or a numeric
value out of the attribute’s domain. In practice, implicit missing
values are the result of missing value imputations mechanisms
that are implemented in a data pipeline. We replace a fraction
of the values of an attribute with ‘NONE’ values for textual
fields or encode it as 99999 for numeric fields.

• Numeric anomalies - unexpected numeric values as a result
of malfunctioning sensors, errors in scaling or type casting
(e.g., change of measurement units from centimeters to meters,
wrong parsing of 𝑐𝑠𝑣 files due to commas as decimal separators,
etc.). For continuous numeric attributes, we corrupt a fraction
of the values by replacing them with Gaussian noise that is
centered at the mean value of the attribute and has a standard
deviation that is scaled randomly from the interval of 2 to 5;

• Swapped numeric fields - misplacement of numeric values as
a result of user mistake or wrong parsing, such as swapping
the length and the width values of a retail product. We choose
two numeric fields in the dataset and swap a fraction of the
values from one attribute to another and vice versa;

• Swapped textual fields - analogous to swapped numeric fields
on textual attributes, misplacement of textual values as a result
of user mistake or wrong parsing, such as swapping the first
name and the surname values of in a user registration form.
We choose two textual fields in the dataset and swap a fraction
of the values from one attribute to another and vice versa;

• Typos - unexpected spelling in textual attributes either due
to user mistakes or errors in parsing (e.g., wrong encoding).
We apply the “butterfinger” strategy that randomly replaces a
fraction of letters in textual attributes with other letters that
are neighbors on a “qwerty” keyboard layout.
Given the error types and descriptive statistics under investiga-

tion, sampling strategy does not have major effects on predictive
performance of our approach in most cases. For instance, explicit

5https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Druglib.com%
29

http://lunadong.com/fusionDataSets.htm
https://github.com/sergred/automating-data-quality-validation-data
http://archive.ics.uci.edu/ml/datasets/Online+Retail/
http://jmcauley.ucsd.edu/data/amazon/
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Druglib.com%29
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Druglib.com%29

 Flights FBPosts

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

Last PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast PartitionLast Partition
 Flights FBPosts

3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions3 Last Partitions

Baseline Comparison

 Flights FBPosts
All PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll PartitionsAll Partitions

average KNN
Deequ Hand-Tuned
Deequ Auto
TFDV Hand-Tuned
TFDV Auto
STATS

Figure 2: Comparison of the predictive performance of the proposed approach against three baseline solutions: Tensorflow
Data Validation, Deequ, and statistical testing. The subplots represent three different training settings where the baselines
learn from (a) only one recently observed data partition, (b) a combination of the last three data partitions, and (c) all the
observed partitions. The TFDV and Deequ baselines are evaluated in their fully automated variant and a hand-tuned
variant applying domain expertise. The bar chart shows that our approach outperforms the other automated baseline
solutions and reaches the predictive performance of the hand-tuned baselines. The automated variants of the baselines
tend to be conservative and produce false alarms in the majority of cases.

missing values would change the completeness measure, no mat-
ter wherein the data partition this error occurs. We use uniform
distribution for error generation in the evaluation setup.
Hardware specification.We use an Ubuntu workstation with
8 Intel i7-8550U CPU cores (1.80GHz) and 24Gb RAM. We run
all the algorithms with a single process and thread, with an
exception of one baseline solution - Deequ library - that is built
on top of Spark and runs at scale.

5.2 Comparison to Baselines
In our first experiment, we compare the predictive performance
of our proposed approach (“avg. kNN” in Figure 2) to the existing
baseline solutions: Tensorflow Data Validation [6], Deequ [43],
and statistical testing [32, 41]. The purpose of this experiment
is to evaluate whether our automated approach can reach the
performance of hand-tuned state-of-the-art solutions.
Baselines.We compare the proposed approach against several
existing solutions. As the first baseline, we use univariate statis-
tical tests to detect shifts in data distribution between the pre-
viously observed data partitions and the current batch as an
indicator of errors. We use two tests - the Kolmogorov-Smirnov
test to detect shifts in continuous numeric attributes [32], and
the Pearson’s Chi-squared test to detect shifts in frequency dis-
tribution for categorical values [41]. For every attribute of a data
partition, we run one statistical test that gives a 𝑝-value as a
measure of whether the data values in the current batch come
from different data distribution than the values in previously ob-
served data partitions. We choose a test based on the attribute’s
data type (numerical or textual data) and compare the outcome
to a common threshold of 0.05. Note that we apply Bonferroni
correction to account for multiple tests.

We also use the Tensorflow Data Validation library [6] (TFDV)
to detect data schema violations as an indicator of erroneous par-
titions. TFDV uses data profiling techniques to model the state
of acceptable data quality by inferring their schema - attribute
names, data domains, various constraints (e.g., on data distribu-
tion, uniqueness, sparsity, etc.). Then, it tests new data against
inferred constraints and raises alerts upon schema violation as a
signal for potential degradation of data quality. Domain experts
use automated schema inference to facilitate data profiling and
analysis but they have to hand-tune the schema to keep it up-
to-date. In addition to the automated version of TFDV, we apply
a hand-tuned version where we define its data schema based
on data profiling and manual monitoring of data batches. This

setting aims to compare our approach to a baseline solution that
exploits domain expertise.

Lastly, we include theAmazon Deequ library [42] and utilize its
declarative data quality constraints to validate the data. Similar
to the TFDV baseline, we evaluate Deequ in both an automated
variant and a hand-tuned variant. In the former, Deequ runs data
profiling and constraint suggestion algorithms to generate data
unit tests to validate the quality of data partitions. In the latter,
we utilize a hand-tuned variant where we manually define the
checks to apply based on data profiling and inspection.
Evaluation scenario. For a relational dataset 𝑑 comprised of
chronologically ordered partitions 𝑑𝑡1 , . . . , 𝑑𝑡𝑛 and timestamps
𝑡1, . . . , 𝑡𝑛 , we sequentially pick a timestamp 𝑡𝑘 within the interval
𝑠𝑡𝑎𝑟𝑡 < 𝑘 < 𝑛, where 𝑠𝑡𝑎𝑟𝑡 is a predefined timestamp number to
start with and 𝑛 is the number of available partitions. We select
𝑠𝑡𝑎𝑟𝑡 as 8 in order to limit the minimum size of the training set to
8 data points. We show the partitions 𝑑𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑑𝑡𝑘−1 as training
data to each approach.

For the datasets with the ground truth, we leverage the hand-
labeled “dirty” versions 𝑑𝑡1 , . . . , 𝑑𝑡𝑛 of these partitions for the
evaluation. We give both the clean data partition 𝑑𝑡 and its cor-
rupted counterpart 𝑑𝑡 to each approach, and let it decide whether
the data batch is of acceptable quality or contains errors. In this
experiment, we use only the datasets with available ground truth
to compare the predictive performance in real-world cases with
unspecified error types, error magnitudes, and real-world tempo-
ral changes in data characteristics.

For each approach, we record two predictions at each times-
tamp 𝑡𝑘 in the interval 𝑠𝑡𝑎𝑟𝑡 < 𝑡 < 𝑛 - one label for the partition
𝑑𝑡 and for the erroneous counterpart𝑑𝑡 respectively. We compute
the ROC AUC score based on the recorded prediction labels and
the ground truth, where 𝑑𝑡 has the “inlier” label, and 𝑑𝑡 has the
“outlier” label. We evaluate the automated baseline solutions in
three different settings, where the automated inference is based
on (a) the last, (b) three last, and (c) all previously observed parti-
tions with no further alteration of the derived rules, constraints,
or patterns, to ensure systematic comparison of our approach
in a fully automated mode. With the first two settings (one and
three data partitions), we evaluate whether using only the most
recent data is sufficient for the automated baseline solutions to
learn the state of “acceptable” data quality accurately and fast.
In contrast, the third setting is applied in order to evaluate the
predictive performance of baselines that take the whole training
set into account and include “far-in-the-past” data partitions.

For the given experimental scenario and datasets, we spent
approximately two hours per dataset for data profiling, manual
inspection, and configuration of Deequ and TFDV via program-
ming interfaces. For Deequ, we implemented declarative unit
tests for data. For TFDV, we adjusted thresholds to allow for
particular fractions of previously unseen data and specified data
ranges. We must point out, however, that hand-tuning involved
analysis of the ground-truth clean data. In this way, we simu-
lated a “domain expert” who knows what errors are expected
in the data. In real-world use cases that assume “zero domain
knowledge”, the analysis we conducted might be infeasible.
Results. Figure 2 depicts the comparison of the predictive perfor-
mance of our approach (“Average KNN”, green) against the three
baseline solutions: Tensorflow Data Validation (yellow), Deequ
(blue), and statistical testing (red). The bar charts report predic-
tive performance on the Flights and the FBPosts datasets under
three different training settings. The baselines learn from (a) only
one recently observed data partition (“Last Partition”, left), (b) a
combination of the last three data partitions (“3 Last Partitions”,
center), and (c) all the observed partitions (“All Partitions”, right).
Tensorflow Data Validation and Deequ baselines are evaluated in
both the fully automated mode and in their hand-tuned variant.

The results indicate that our approach outperforms other auto-
mated baseline solutions and reaches the predictive performance
of hand-tuned baselines (ROC AUC score of 95%, whereas the
hand-tuned Deequ solution reaches 100% and 92% on the Flights
and FBPosts datasets, respectively). Other automated solutions
tend to produce false alarms in the majority of cases. We attribute
this to the fact that the automated baseline solutions are “con-
servative” and strict in terms of their chosen constraints, and
thereby produce false alarms in the majority of cases.

Table 3 depicts average execution times for both our approach
and the baselines. It shows that, on average, our approach is at
least one order of magnitude faster than the baseline solutions.
High computational efficiency is associated with the fact that
both the descriptive statistics and the KNN algorithm are easy
to compute and train. Since the Deequ library is built on top
of Spark, this baseline takes more time to check data quality
metrics for small datasets due to the large overhead for parallel
computation. However, we assume that Deequ might be more
efficient on large-scale data, where other baseline solutions would
perform reasonably slower.
Discussion. The errors in the dataset are mostly missing values
or inconsistencies due to data integration (e.g., different datetime
formats for different records). To be precise, 95% of the arrival
and departure time information have an inconsistent date-time
format, with a large fraction of the data missing. Inconsistencies
in the datetime format lead to two problems - either the year
is omitted, in which case several data preprocessing techniques
replace the missing value with the default year 1970, or the day
and month values are swapped as the solution has no means
of distinguishing these values. 63% of the arrival and departure
gates information is inconsistent in the following ways: (1) pres-
ence of explicit and implicit missing values; (2) the missing value
encoding differs (e.g., ‘-’, ‘–’, ‘Not provided by airline’); or (3) the
information is semantically incomplete (e.g., the ‘Gate 2’ value
is replaced with the value ‘Terminal 8, Gate 2’, etc.). Since the
cleaned version of the dataset was provided semi-automatically,
most of the records which contained missing values were im-
puted where possible (e.g., by aggregation) or omitted as there

Candidate Mode Flights Data FBPosts Data Amazon Data

Avg. KNN - 0.042 +- 0.001 0.006 +- 0.001 0.215 +- 0.087

Deequ
1 Last 0.322 +- 0.018 0.313 +- 0.020 0.782 +- 0.358
3 Last 0.381 +- 0.026 0.329 +- 0.022 1.560 +- 0.800
All 1.115 +- 0.382 0.468 +- 0.084 6.937 +- 5.427

TFDV
1 Last 0.141 +- 0.043 0.036 +- 0.008 6.679 +- 3.380
3 Last 0.295 +- 0.060 0.058 +- 0.014 7.479 +- 3.753
All 1.388 +- 0.702 0.126 +- 0.060 14.40 +- 9.940

STATS
1 Last 0.189 +- 0.025 0.160 +- 0.035 11.30 +- 3.575
3 Last 0.194 +- 0.067 0.189 +- 0.061 20.20 +- 6.613
All 0.204 +- 0.069 0.379 +- 0.439 105.6 +- 30.80

Table 3: Average execution time (in seconds) for base-
line comparison. We compare our approach (Avg. KNN)
against three baselines (Deequ, Tensorflow Data Valida-
tion, and statistical testing), each of them computed in
three modes, where (a) one last, (b) three last, and (c) all
previously observed partitions are used for training. The
table shows that the average execution time of our ap-
proach is one order ofmagnitude faster than the baselines.

Flights Data FBPosts Data
Candidate Mode TP FP FN TN TP FP FN TN
Avg. KNN - 30 0 1 29 52 0 5 47

Deequ
1 Last 30 0 30 0 50 2 51 1
3 Last 30 0 28 2 52 0 52 0
All 30 0 22 8 52 0 52 0

Deequ
Hand-Tuned

1 Last 30 0 0 30 48 4 4 48
3 Last 30 0 0 30 48 4 4 48
All 30 0 0 30 48 4 4 48

TFDV
1 Last 0 30 0 30 0 52 0 52
3 Last 24 6 8 22 0 52 0 52
All 28 2 23 7 0 52 0 52

TFDV
Hand-Tuned

1 Last 21 9 2 28 0 52 0 52
3 Last 0 30 0 30 0 52 0 52
All 0 30 0 30 50 2 4 48

STATS
1 Last 0 30 0 30 0 52 0 52
3 Last 0 30 0 30 0 52 0 52
All 0 30 0 30 0 52 0 52

Table 4: Confusion matrices for the baseline comparison.
Analogous to Table 4, we compare our approach against
three baselines in three different modes. We evaluate
TFDV and Deequ baselines in their fully automated vari-
ant and a hand-tuned variant applying domain expertise.

were no means to guarantee the correct missing value imputa-
tion scheme. 18% of the categorical attribute ‘contenttype’ have
implicit missing value ‘nan’ or syntactic mismatch in categories
(e.g., a combination of German and English words for ‘article’).
16% of the attribute ‘text’ have the wrong encoding.

Our approach performs well on the given datasets and reaches
a ROCAUC score of 95%.Many of the baseline solutions, however,
perform on the level of random guessing. Further analysis reveals
that these baselines label the majority of the data partitions as
erroneous (See Table 4). The reason why the data partitions are
labeled as erroneous is due to the conservative default settings of
the baseline solutions, as they are primarily designed to strictly
detect data quality degradation and have false alarm rates as a
secondary concern. Further analysis indicates that TFDV pre-
sumably detects errors in attributes where we know for certain

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
amazon

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
drug_review

explicit_misvals implicit_misvals numeric_anomalies swap_numeric swap_string typos

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
retail

Figure 3: Overview of the predictive performance of our approach on three real-world datasets with synthetically gener-
ated errors under varying error magnitude (X-axis, 1 to 80%). We consider six error types: explicit and implicit missing
values, numeric anomalies, typos in textual attributes, swapped fields for numeric and textual attributes. We observe two
patterns: (a) similar predictive performance regardless of the fraction of errors (flat lines), or (b) gradual growth of the
predictive performance towards bigger error magnitude, with the distinctive, more rapid growth for fractions up to 20%.

that there are no errors present. The ‘Source’ and the ‘Flight’
attributes of the Flights dataset do not contain errors. However,
TFDV detects a violation of data schema as there are previously
unseen values in the new batch, so the attribute domain has
changed. A similar situation holds for the FBPosts dataset, with
one additional type of alert - “non-boolean values” (as FBPosts
contains one boolean attribute).

As for the hand-tuned baselines, Deequ reaches a perfect ROC
AUC score on the Flights dataset and 92% on the FBPosts with
hand-tuned thresholds for the completeness metric. For TFDV,
the ROC AUC score ranges from 50 to 82%. The “min domain
mass” parameter (i.e., a minimal fraction of data records that
have to be included from the inferred data domain) was set to
0 in order to allow for any fraction of previously unseen values
in the data partition. Thresholds for the completeness metric
were set similarly to the Deequ baseline. This finding highlights
that manual data quality monitoring and hand-tuning of existing
solutions with the domain expertise is highly dataset-specific
and tedious.

Note that, for Tensorflow Data Validation in several settings,
the automated variants perform better than the hand-tuned vari-
ant. The reason is that the automated variants are retrained after
a new data partition becomes available, whereas the hand-tuned
variant is specified once on the initial training set (i.e., 𝑡1 to 𝑡𝑠𝑡𝑎𝑟𝑡).

5.3 Sensitivity to Different Error Types and
Magnitudes

In this experiment, we evaluate whether our approach detects
all error types under varying error magnitudes with the similar
predictive performance or whether there are error types that are
harder to detect than others.
Evaluation scenario. For every dataset 𝑑 with synthetically
generated ground truth, we fix the error type and the error mag-
nitude for generating corrupted data partitions 𝑑𝑡 . Other than
that, the evaluation scenario is identical to the one in Section 5.2.
Results. Figure 3 shows line charts that represent predictive
performance of our proposed approach per dataset and error
type, where the x-axes of the plot depict the error magnitude.
We are interested in the relationship between the predictive per-
formance of our approach and the fraction of errors that are
introduced in data partitions. Two distinctive patterns arise in
terms of the curve shapes: (a) flat lines represent similar predic-
tive performance regardless of the fraction of errors, whereas (b)
the curves with gradual growth towards more significant error
magnitudes mean that it is easier to detect degradation in data
quality with greater fractions of the data partition being affected.

The latter curves capture rapid increase for smaller fractions of 1
to 20%. The relative difference in predictive performance between
the error types varies among the datasets and error magnitudes.
Even though the Drug Review and the Online Retail datasets
show resemblance in terms of the ROC AUC score, the Amazon
dataset exhibits different patterns. For instance, the kNN novelty
detection approach shows constant predictive performance rate
on Amazon’s numeric anomalies but has a “learning curve” for
Drug Review or Online Retail.
Discussion. The figure shows that, in general, the predictive
performance differs from one error type to another. We attribute
this behavior to two findings from the experiment’s analysis.
First, some types of errors are, in fact, easier to recognize than
others. That statement holds for the use cases of manual data
quality monitoring that are conducted by domain experts. For
instance, an explicit missing value (e.g., a NULL value) is reason-
ably straightforward to detect even when few data records are
corrupted. Other error types, such as numeric anomalies, can
be detected only in cases where the ranges of acceptable values
are available, or the assumption on data distribution exist [18].
Comparing ROC AUC scores between the error types, error mag-
nitudes, and datasets indicates that predictive performance is
dataset-specific and likely depends on scales and domains of
every data attribute. In the majority of cases, however, missing
values and numeric anomalies can be detected relatively reliably
and result in high ROC AUC scores.

For every error type that we investigate, there are descriptive
statistics that provide better features for classification. For in-
stance, the completeness measure is more descriptive to detect
explicit missing values. Data distribution measures(e.g., mean,
standard deviation, minimum, maximum) are more descriptive
to detect numeric anomalies. However, there is no single metric
that is more descriptive than others for all given error types.

Note that our approach often performs reasonably well in
cases of small error magnitudes (already at 10%), when intro-
duced errors drastically affect the descriptive statistics of a data
partition. Should our approach be insensitive to a specific error
distribution (or particular error types), our approach can be ex-
tended by adding another descriptive statistic that is sensitive to
this error distribution or error type.

Based on Figure 3, typos (brown) appear to be the hardest error
type that we consider in this study. We assume that the index of
peculiarity for textual attributes is a direct proxy for this error.
However, predictive performance on the Drug Review dataset
nearly reaches the level of random guessing, whereas on other
datasets it exhibits a slow learning curve. Further experimental
analysis reveals several differences between textual attributes on

the datasets under investigation. Our approach performs well in
cases where attributes have categorical values with rather low
cardinality and high repetition of values (e.g., country code). It
also performs well on long texts such as reviews and descriptions
with high a likelihood of word repetition within the data batch.
In this case, a typo that is introduced in one word that repeats
itself in the data batch yields high chances for this error to be
detected by our approach, as this word becomes “peculiar” in
the context of the data batch. On the other hand, typos that are
introduced in almost-unique words that belong to a dictionary
of a textual attribute would not be detected as this error replaces
one unique word to another. For several curves that involved
textual attributes, there exists a downward trend at the begin-
ning when the training set is small. It happens due to our design
decision to keep a constant contamination parameter (see Sec-
tion 4, “Modeling Decisions”). In cases of small training sets, the
kNN algorithm learns a broad decision boundary that leads to
false positive results (i.e., where the majority of data points are
considered inliers). Only with the growing training set, the deci-
sion boundary becomes smaller and yields more accurate results.
One preventative measure is to ensure large initial training sets.
When this is not possible, another option is to adaptively select
larger contamination parameters for smaller training sets.

We obtain several findings regarding the relationship between
the predictive performance of our approach and error magni-
tude. In general, we note two patterns in the curve. The first case
is where the ROC AUC score remains approximately constant
across all error magnitudes and does not depend on the fraction
of corrupted records in a data partition. This happens in cases
where a few erroneous records in a data partition are sufficient
to affect descriptive statistics and reliably identify the data parti-
tion as erroneous. The second case is where the ROC AUC score
increases gradually with the growth of the error fraction. In this
case, the reason is that detecting data quality degradation be-
comes easier when more data in the partition are corrupted. One
example is the explicit missing values error type. Note that, for
this example, a clean partition 𝑑𝑡 might allow for missing values,
so that a simple rule of “100% completeness” is not applicable.
Thus, the higher the difference between the fraction of missing
values in between clean and erroneous data partitions, the higher
is the overall ROC AUC score. Note that the shape of the curve
and the rate of growth are dataset-specific.

5.4 Sensitivity to a Combination of Errors
We also extend the experiment from Section 5.3 to evaluate the
sensitivity of our approach to scenarios where a combination of
two different error types occurs in the same data partition.
Evaluation scenario. For every dataset 𝑑 with synthetically
generated ground truth, we fix the error magnitude to 50% for
generating corrupted data partitions 𝑑𝑡 . We choose an attribute
𝐴𝑚 of every data partition 𝑑𝑡 and apply a pair of error types
(if suitable for the attribute’s data type). We use all pairwise
combinations of error types under investigation. Other than that,
the evaluation scenario is identical to the one in Section 5.2. Note
that, as we sample the values-to-corrupt uniformly, there is an
overlap in selected cells of a data partition 𝑑𝑡 for the first and the
second error type of the pair (∼ 40%). For the overlapping values,
the second error type overrides the changes made by the first
type, resulting in approximate distribution of corrupted values
to be 20% of the data partition and 30% respectively. In the case
when the union of changes provided by each error type exceeds

50% of the data partition, we uniformly sample changes from
the union to ensure total error magnitude of 50%. We compare
the predictive performance of our approach to the respective
performance when only one of the error types is applied.
Results. For every attribute of every dataset and every applied
pair of error types under investigation, we computed three ROC
AUC scores: the one where only the first error type is applied
to corrupt the data, the one where only the second error type is
applied, and one for a combination of applied error types. For
all computed scores, we report the mean squared error of 0.028
between the ROC AUC score on a combination of error types
and the maximum of ROC AUC scores where only one of the
two error types is applied.
Discussion. The results indicate that the predictive performance
of our approach in the case when two error types are combined
is, on average, close to the performance on a single error type,
the “easiest to detect” of the two, taking into account reduced
error magnitudes (i.e., when errors corrupt 20-30% of the data
partition separately, adding up to a total error magnitude of 50%).
We generalize this observation to a combination of more than
two error types that corrupt a data partition together.

5.5 Detection Quality over Time
In this experiment, we evaluate the detection quality of our
approach over time. The motivation behind this experiment is
twofold: (a) the size of the training set for the novelty detection
algorithm grows continuously, which might gradually improve
predictive performance, and (b) data characteristics are volatile
and can change over time, which might lead to the occasional
degradation of predictive performance.
Evaluation scenario. For every dataset 𝑑 with synthetic errors,
we fix the error type for generating corrupted data partitions 𝑑𝑡 .
We compute two labels for every daily-ingested data partition,
one for the clean variant and one for the corrupted counterpart.
When we visualize ROC AUC scores over time, we aggregate
these labels on a monthly basis and plot line charts with months
as X-axes. Other than that, we leverage a setup that is identical
to previous experiments.
Results. Figure 4 depicts the line charts that represent changes
in the predictive performance of our approach over time, where
the x-axis is the monthly time window (for clarity reasons, it
is shown by year in the “Drug Review” graph). Two distinctive
patterns arise in terms of the curve shape: (a) flat lines repre-
sent approximately constant predictive performance, whereas
(b) curves with the gradual increase indicate improvements over
time and, respectively, with the growing size of the training set
(see Drug Review). The latter examples converge to a stable rate
and further resemble the behavior of approximately constant
predictive performance.
Discussion. The results indicate how the predictive performance
of our approach changes over time, with the corresponding
growth of the training set for the novelty detection algorithm to
learn from. Similar to the previous section, we see two patterns.
First, in most of the cases, the average prediction performance
does not change significantly over time. This finding might be
counter-intuitive at first, as we usually assume that an ML-based
algorithm tends to perform better with more data points to train
from. The reason for the approximately constant ROC AUC score
is that data points that represent erroneous data partitions are
likely to be far from the decision boundaries learned by the kNN

2010-07
2011-01

2011-07
2012-01

2012-07
2013-01

2013-07
2014-01

amazon

0.6

0.8

1.0

RO
C

AU
C

sc
or

e

2009
2010

2011
2012

2013
2014

2015
2016

2017

drug_review

explicit_misvals implicit_misvals numeric_anomalies swap_numeric swap_string typos

2011-01
2011-02

2011-03
2011-04

2011-05
2011-06

2011-07
2011-08

2011-09
2011-10

retail

Figure 4: Predictive performance of our approach over time (X-axis). The figure depicts line charts that represent the
ROC AUC score for every dataset with the ground truth, per error type over time. Various magnitudes of errors and data
attributes are aggregated. The results show that, in the majority of cases, the predictive performance does not improve
significantly over time with the growth of the size of the training set. Several cases (Retail, swapped fields and numerical
outliers) demonstrate an initial increase of the ROC AUC score, followed by convergence to a stable rate over time. Note
that, for the Amazon dataset, line charts that depict missing values, numeric anomalies, and swapped fields error types
overlap and are represented by one line (red).

algorithm. These far-off data points (i.e., outliers) are likely to
be detected reliably even under the limited size of the training
set and, therefore, lead to the stable predictive performance of
the kNN novelty detection approach. The second pattern is a
gradual increase in the predictive performance in the beginning
until we converge to a stable performance rate. Examples are
explicit missing values and swapped textual fields for the Drug
Review dataset. We attribute this pattern to the insufficient size
of the training set to learn the decision boundaries that lead to
reliable predictions. We assume that the stage of gradual increase
in predictive performance corresponds to the “learning process”
of the approach to derive accurate decision boundaries with clear
benefits of accumulating more data points to the training set.
After convergence, re-training of the approach is necessary to
self-adapt to temporal changes in data.
The importance of batch frequency. Preliminary experiments
show that, when choosing between daily, weekly, and monthly
ingestion frequencies, daily ingestion of data led to relatively
higher predictive performance. We associate this phenomenon
with larger sizes of the training set.

6 RELATEDWORK
We distinguish two lines of research that address related data
management issues at different angles - error detection for data
cleaning [1, 27, 36, 40, 47] and data quality validation [3, 20, 43].
Error detection for data cleaning. The goal of error detection
mechanisms is to find the exact data records and attributes that
contain errors. Abedjan et al. [1] consider four different cate-
gories of error detection solutions: (a) rule violation, (b) pattern
violation, (c) outlier detection, or (d) duplicate conflict resolution
based systems. Some of the algorithms require rules or patterns
to be specified by the end-user. Outlier detection based meth-
ods require clean data to be present in order to “learn” what the
inliers are and then decide whether particular records deviate
from the expected behavior. Our approach follows similar ideas
but constructs feature vectors based on the corresponding data
quality metrics that are computed over the data partition instead
of relying on the raw data itself. This leads to feature vectors of
low dimensionality, fast model training, and guarantees numeric
representation of feature vectors. The last category, duplicate
conflict resolution systems, handles the specific case of duplicate

entities in the data, and does not cover other types of errors. Com-
pared to the existing error detection algorithms, our approach
can detect unspecified error types and does not require domain
expertise in terms of rules, patterns, or labeled examples.
Data validation. Thesemethods aim tomake a decisionwhether
the data is valid w.r.t. particular assumptions. Tensorflow Data
Validation [6] models the state of acceptable data quality with
the user-defined data schema - attribute names, data domains,
various constraints (e.g., on data distribution, uniqueness, spar-
sity, etc.). It, then, tests new data against the specified constraints
and raises alerts upon schema violation. To assist the end-user,
initial data schema can be inferred automatically by analyzing
reference data (i.e., an “acceptable” data sample). As stated by
the authors, schema refinement by domain experts is required to
guarantee the performance of the library, and the schema infer-
ence functionality is provided as an aid, not a replacement of the
domain expert. Data linter [20], on the contrary, validates data
against data lints - deviations from accepted practices of data
analysis (analogous to code lints - snippets of code that depict
deviation from best practices in software engineering). The lints
are predefined by the developers of the tool yet are extensible
in case customized practices are in place. Another example is
the Deequ library for automating the verification of data quality
at scale [42], which proposes unit tests for data - a declarative
specification of integrity constraints, such as completeness, con-
sistency, syntactic and semantic accuracy, which the end-user
needs to specify. Schelter et al. [42] also introduce functional-
ity for automated constraint suggestion based on data profiles
(collected descriptive statistics on data attributes). However, this
method requires the presence of reference data - a sample of the
data population that is considered to be of acceptable quality
and is designed to generate suggestions that are validated by a
domain expert. The Metanome platform [36] is a tool for data
profiling that incorporates numerous algorithms for the detection
of functional, order, or inclusion dependencies, as well as cardi-
nality estimation. This method is not a data validation solution as
such, but allows to automatically discover patterns from data that
later could be used as rules for data quality. Metanome requires
“acceptable” data samples to be present for reliable mining of the
data quality patterns. As the main purpose of Metanome is data
profiling and not directly data quality validation, this framework
requires additional rules for detection of data quality issues and
cannot be used directly as a data quality validation tool [10].

To summarize, existing approaches require domain knowl-
edge to define rules, denial constraints, patterns, configuration
of error detection solutions [1, 27], integrity constraints, data
unit tests [42], error generators [39], data schema [6], or data
lints [20]. Automation tools exist for data profiling, constraint
suggestion, schema inference, or error detection. These solutions
assume a domain expert in the loop. Our approach, in contrast,
does not require any domain knowledge specified explicitly for
common error types. In contrast to existing solutions, it is in-
spired by the work of Bleifuß et al. [4] on exploring changes in
dynamic data, Ehrlinger et al. [10] on automating data quality
validation, and Ioannou et al. [21] on generating benchmark data.
Finally, as our experimental analysis indicates, few automated
solutions for data quality validation appear to be particularly
“conservative” and produce false alarms in the majority of cases.

7 CONCLUSION & FUTUREWORK
Data quality validation is crucial for large-scale production pipelines.
Challenging cases are the ones where domain expertise is incom-
plete and data changes over time. We showed that collecting
simple descriptive statistics over the data and analyzing them
with novelty detection methods makes it possible to distinguish
critical errors in data. In contrast to existing solutions, our ap-
proach does not require domain experts to define rules or labeled
examples, and self-adapts to temporal changes in the data char-
acteristics. We evaluated our approach against existing baselines
on five real-world datasets with real and synthetically generated
errors. We found that our approach detects the unspecified er-
rors in many cases under varying error magnitudes, outperforms
other automated solutions in terms of predictive performance,
and reaches the ROC AUC score of baselines that are hand-tuned
with domain expertise.

In future work, we plan to investigate more exotic types of er-
rors and intend to look deeper into specific types of errors that are
hard to capture by common data quality metrics, e.g., errors that
are a deterministic function of the inputs (like accidentally chang-
ing the encoding). As there exist few real-world datasets that are
available for evaluation purposes in data quality validation on
dynamic data, we also intend to provide a set of benchmarking
datasets. These datasets should contain a wide range of error
types and patterns of temporal changes in data characteristics.
This will enable research on controlling the false alarm rates for
novelty detection algorithms in data quality validation settings.
Acknowledgements. This work was funded by the HEIBRiDS graduate school,
with the support of the German Ministry for Education and Research as BIFOLD,
BBDC 2 (01IS18025A), BZML (01IS18037A), the Software Campus Program (01IS17052),
and Ahold Delhaize. All content represents the opinion of the authors, which is not
necessarily shared or endorsed by their respective employers and/or sponsors.

REFERENCES
[1] Ziawasch Abedjan et al. 2016. Detecting Data Errors: Where Are We and

What Needs to Be Done?. In PVLDB, Vol. 9.
[2] Fabrizio Angiulli and Clara Pizzuti. 2002. Fast outlier detection in high dimen-

sional spaces. In PKDD.
[3] Dennis Baylor et al. 2017. TFX: A Tensorflow-based Production-scale Machine

Learning Platform. In KDD.
[4] Tobias Bleifuß et al. 2018. Exploring Change - A New Dimension of Data

Analytics. In PVLDB, Vol. 12.
[5] Michael Brackett and Production Susan Earley. 2009. The DAMA Guide to

The Data Management Body of Knowledge (DAMA-DMBOK Guide). (2009).
[6] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven Whang, and Sudip Roy.

2019. Data Validation for Machine Learning. SysML.
[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detec-

tion: A survey. ACM computing surveys (CSUR) 41, 3 (2009).

[8] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding fre-
quent items in data streams. In ICALP.

[9] Daqing Chen, Sai Laing Sain, and Kun Guo. 2012. Data mining for the online
retail industry: A case study of RFM model-based customer segmentation
using data mining. (2012).

[10] Lisa Ehrlinger and Wolfram Wöß. 2017. Automated data quality monitoring.
In ICIQ.

[11] Martin J Eppler. 2006. Managing information quality: Increasing the value of
information in knowledge-intensive products and processes. Springer Science &
Business Media.

[12] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007.
Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm.
In AofA.

[13] Hector Garcia-Molina. 2008. Database systems: the complete book. Pearson
Education India.

[14] Felix Gräßer, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder. 2018.
Aspect-Based Sentiment Analysis of Drug Reviews Applying Cross-Domain
and Cross-Data Learning. In DH.

[15] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. 2019. Statistical Analysis
of Nearest Neighbor Methods for Anomaly Detection. In NeurIPS.

[16] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW.

[17] Alireza Heidari, Joshua McGrath, Ihab Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In CoRR. arXiv:1904.02285

[18] Joseph M Hellerstein. 2008. Quantitative data cleaning for large databases.
UNECE.

[19] Peter J Huber. 1992. Robust estimation of a location parameter. In Break-
throughs in statistics. Springer.

[20] Nick Hynes, D Sculley, and Michael Terry. 2017. The data linter: Lightweight,
automated sanity checking for ml data sets. In NIPS MLSys Workshop.

[21] Ekaterini Ioannou, Nataliya Rassadko, and Yannis Velegrakis. 2013. On gener-
ating benchmark data for entity matching. Journal on Data Semantics (2013).

[22] Jin Huang and C. X. Ling. 2005. Using AUC and accuracy in evaluating
learning algorithms. TKDE 17, 3 (2005).

[23] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based
outlier detection in high-dimensional data. In SIGKDD.

[24] Tien Fabrianti Kusumasari et al. 2016. Data profiling for data quality improve-
ment with OpenRefine. In ICITSI.

[25] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava.
2012. Truth finding on the deep web: Is the problem solved?. In PVLDB, Vol. 6.

[26] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In
ICDM.

[27] Mohammad Mahdavi et al. 2019. Raha: A configuration-free error detection
system. In SIGMOD.

[28] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error
Correction via a Unified Context Representation and Transfer Learning. In
PVLDB, Vol. 13.

[29] Zelda Mariet, Rachael Harding, Sam Madden, et al. 2016. Outlier detection in
heterogeneous datasets using automatic tuple expansion. (2016).

[30] Markos Markou and Sameer Singh. 2003. Novelty detection: a review—part 1:
statistical approaches. Signal processing 83, 12 (2003).

[31] Markos Markou and Sameer Singh. 2003. Novelty detection: a review—part 2:
neural network based approaches. Signal processing 83, 12 (2003).

[32] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association 46, 253 (1951).

[33] Robert Morris and Lorinda L Cherry. 1975. Computer detection of typograph-
ical errors. IEEE Transactions on Professional Communication 1 (1975).

[34] Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. 2019. ED2: A
Case for Active Learning in Error Detection. In CIKM.

[35] Stephen M Omohundro. 1989. Five balltree construction algorithms. Interna-
tional Computer Science Institute Berkeley.

[36] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. 2015. Data Profiling with Metanome. In PVLDB, Vol. 8.

[37] Neoklis Polyzotis et al. 2017. Data Management Challenges in Production
Machine Learning. In SIGMOD.

[38] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient
algorithms for mining outliers from large data sets. In SIGMOD.

[39] Sergey Redyuk et al. 2019. Learning to Validate the Predictions of Black Box
Machine Learning Models on Unseen Data. In HILDA.

[40] Theodoros Rekatsinas, Xu Chu, Ihab Ilyas, and Christopher Ré. 2017. Holo-
clean: Holistic data repairs with probabilistic inference. In PVLDB, Vol. 10.

[41] Albert Satorra and Pete M Bentler. 1994. Corrections to test statistics and
standard errors in covariance structure analysis. (1994).

[42] Sebastian Schelter et al. 2018. Automating Large-scale Data Quality Verifica-
tion. In PVLDB, Vol. 11.

[43] Sebastian Schelter et al. 2019. Unit Testing Data with Deequ. In SIGMOD.
[44] Bernhard Schölkopf et al. 2000. Support vector method for novelty detection.

In NeurIPS.
[45] Michael Stonebraker and Ihab Ilyas. 2018. Data Integration: The Current

Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018).
[46] David Martinus Johannes Tax. 2001. One-class classification: Concept learning

in the absence of counter-examples. Ph.D. Dissertation. TU Delft.
[47] Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-Driven Error

Detection. In SSDBM.

http://arxiv.org/abs/1904.02285

	Abstract
	1 Introduction
	2 Background
	3 Problem Statement
	4 Approach
	5 Evaluation
	5.1 Experimental Setup
	5.2 Comparison to Baselines
	5.3 Sensitivity to Different Error Types and Magnitudes
	5.4 Sensitivity to a Combination of Errors
	5.5 Detection Quality over Time

	6 Related Work
	7 Conclusion & Future Work
	References

