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1 INTRODUCTION
Machine learning (ML) has become a central component in
modern software applications, giving rise to many new chal-
lenges [8, 15, 20]. Tremendous progress has been made in
this context with respect to model serving [1, 6, 10], experi-
ment tracking [14, 16, 22, 23], model diagnosis [4, 5, 11, 21]
and data validation [4, 18].

In this paper, we focus on the arising challenge of automat-
ing the operation of deployed ML applications, especially
with respect to monitoring the quality of their input data.
Existing approaches [1, 18, 22] for this problem have not
yet reached broad adoption. One reason for that is that they
often require a large amount of domain knowledge, e.g., to
define “data unit tests” and corresponding similarity metrics
and thresholds for detecting data shifts. Additionally, it is
very challenging to test data at early stages of a pipeline
(e.g., during integration) without explicit knowledge of how
the data will be processed by downstream applications. In
other cases, the engineers in charge of operating a deployed
ML model may not have access to the model internals, for
example if they leverage a popular cloud ML service such as
Google AutoML1 for training and inference. Integrating and
automating data quality monitoring into ML applications is
also difficult due to the lack of agreed upon abstractions for
defining and deploying such applications.
We list three approaches to tackle data quality in ML ap-

plications from recent work: (i)Measuring data quality with
“data unit tests” using the Deequ [18] library; (ii) Improv-
ing data quality with missing value imputation using the
DataWig [3] library; and (iii) Quantifying the impact of data
quality issues on the predictive performance of a deployed
ML model [19]. Finally, we outline challenges and potential
directions for combining these approaches and for automat-
ing their configuration in real world deployment settings.

2 INDIVIDUAL APPROACHES
Successful ML applications require careful data selection,
data preprocessing and model building. Given that the re-
sponsibilities for such applications are usually distributed
across people with different competencies [12], engineers
in charge of operating ML applications should be supported

1https://cloud.google.com/automl/

Figure 1: Vison for integrating large-scale data quality
verification with Deequ, statistical missing-value im-
putation, and pipeline performance prediction for au-
tomatic verification, “patching” and alarming of ML
pipelines.

with automatic data quality monitoring infrastructure, which
(a) does not require domain expertise, and (b) does not re-
quire access to model internals.
Measuring data quality. When confronted with poor pre-
dictive performance of a model, it is usually a good idea to
first inspect its input data. We have previously proposed
Deequ2 [17, 18] for the definition and scalable execution of
data quality tests. The library allows users to define quality
tests for structured data in a declarative manner, and exe-
cute them on large datasets with Apache Spark. Parts of the
model monitoring functionality of the cloud ML platform
Amazon Sagemaker have been built upon Deequ3.

Despite the growing adoption of Deequ, a number of chal-
lenges remain for further automation. In particular, it is dif-
ficult to automatically decide which statistics to inspect for
which columns, and how to set thresholds for alarming based
on these statistics. We are currently experimenting with an
automation approach for use cases where a new batch of
2https://github.com/awslabs/deequ
3https://aws.amazon.com/blogs/aws/amazon-sagemaker-model-monitor-
fully-managed-automatic-monitoring-for-your-machine-learning-
models/
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data needs to be tested and ingested at regular intervals (e.g.,
daily ingestion of log files). In this approach, we maintain
time series of column statistics from previously observed
data batches. To decide whether a new batch of data should
be accepted, we compare its statistics to a forecast-based
estimate of the expected statistics based on the observed
time series.
Improving data quality. Once data quality issues are de-
tected, they need to be addressed appropriately. We may
for instance want to impute missing values. Libraries like
DataWig4 [2, 3] support missing value imputation for struc-
tured data in a fully automated manner. DataWig automati-
cally featurizes all input columns, except the column with
to-be-imputed values and trains a classifier on a concate-
nation of these features to predict the missing value. It au-
tomatically tunes hyperparameters in a given time budget,
performs domain adaption by detecting and correcting shifts
between rows that are used for training and rows that are
subject to imputation, and calibrates likelihoods for imputed
values allowing to control which imputed values are useful
for downstream applications. These properties render it at-
tractive for data engineers who do not have the necessary
domain expertise and/or time to investigate every dataset
in detail [7]. Exploiting dependencies between features is
not only helpful for imputation, but also for monitoring
quality on a single record level. Consider the example high-
lighted in [12], where the values for the column country
change from upper case (US) to lower case (us), causing prob-
lems in downstream feature extractors. At serving time, a
well-calibrated imputation model that treats these values
as missing can identify the lower case version, (us), as un-
likely under the previously learnt model and raise warnings
automatically. A practical limitation of this approach, in par-
ticular with regard to automation, is the difficulty to deal
with rare values that are common in heavy-tailed real-world
datasets and with previously unseen values in general.
Quantifying the impact of data quality issues on the
predictive performance of anMLmodel. A central ques-
tion for data quality monitoring is the impact that any ob-
served change in the distribution of the input data has on
the predictive performance of the deployed ML model [12].
The approaches described above are model independent and,
thus, have no means of quantifying this downstream effect.
Imagine a scenario in which a model simply ignores a given
input feature (e.g., due to L1 regularisation). A shift in this fea-
ture may be detected by systems monitoring the input data
and might lead to unnecessary alarms. Recent approaches
to model monitoring leverage statistics of the model predic-
tions [9, 13] in a model agnostic way.

4https://github.com/awslabs/datawig

We have built upon this work to predict the performance
of generic black box classifiers5 [19]. We achieve this by gen-
erating perturbed copies of the original data where each copy
resembles typical errors and data quality problems. Ideally,
typical types of perturbations are provided by a domain ex-
pert. The original classifier applied to the perturbed datasets
yields pairs of the form (quantized output distribution, model
performance). These are fed to a regression model that learns
to predict the model performance, the “pipeline performance
predictor” (PPP). An alarm is raised at serving time if the
predicted performance falls below a predefined performance
threshold.
The only step requiring domain knowledge within this

procedure is the specifiction of potential data errors. Our
experiments, however, indicate that it is often sufficient to
train the regression model with pre-specified common er-
ror types [4]. One shortcoming of this approach lies in its
unawareness of the particular data points or properties that
cause a predicted performance drop. Future work should put
emphasis on a better understanding of the effect that errors
in the data have on a model’s output distribution.

3 VISION FOR INTEGRATION
While the three above described techniques each have their
independent use case, fully automated data quality monitor-
ing may greatly benefit from a tight integration. Consider,
for instance, the following scenario: Deequ detects missing
values or likely errors in a particular column of a dataset.
Based on a DataWig model, values in this column are im-
puted or replaced. Eventually, PPP verifies that the errors
would indeed have caused a large drop in model performance
and that this drop is significantly mitigated with DataWig’s
corrections.

The effort of creating an appropriate configuration would
merely be comprised of (i) defining column constraints in
Deequ (which can be semi-automated), (ii) specifying typical
errors (which can be dispensed with for common scenarios)
and required model performance thresholds for PPP, (iii)
setting a threshold confidence for missing-value imputation
in DataWig. Then the entire process operates without human
intervention: The ML pipeline is patched automatically and
warnings/errors are raised when degrading performance
cannot be repaired.
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