
Proactively Screening Machine Learning Pipelines

with ArgusEyes

Sebastian Schelter† Stefan Grafberger† Shubha Guha† Bojan Karlaš†† Ce Zhang*

†University of Amsterdam ††Harvard University *ETH Zürich
{s.schelter,s.grafberger,s.guha}@uva.nl bojan_karlas@hms.harvard.edu ce.zhang@inf.ethz.ch

ABSTRACT

Software systems that learn from data with machine learning (ML)
are ubiquitous. ML pipelines in these applications often suffer from
a variety of data-related issues, such as data leakage, label errors or
fairness violations, which require reasoning about complex depen-
dencies between their inputs and outputs. These issues are usually
only detected in hindsight after deployment, after they caused harm
in production. We demonstrateArgusEyes, a system which enables
data scientists to proactively screen their ML pipelines for data-related
issues as part of continuous integration. ArgusEyes instruments, ex-
ecutes and screens ML pipelines for declaratively specified pipeline
issues, and analyzes data artifacts and their provenance to catch
potential problems early before deployment to production. We
demonstrate our system for three scenarios: detecting mislabeled
images in a computer vision pipeline, spotting data leakage in a
price prediction pipeline, and addressing fairness violations in a
credit scoring pipeline.

ACM Reference Format:

Sebastian Schelter, Stefan Grafberger, Shubha Guha, Bojan Karlaš, Ce Zhang.
2023. Proactively Screening Machine Learning Pipelines with ArgusEyes.
In Companion of the 2023 International Conference on Management of Data
(SIGMOD-Companion ’23), June 18–23, 2023, Seattle, WA, USA.

1 INTRODUCTION

Software systems that learn from data with machine learning (ML)
are ubiquitous. The behavior of such applications very much de-
pends on their input data, and experience shows that it is difficult
to ensure that all data-centric operations are implemented cor-
rectly [1, 7–10, 13].
Data-related issues in ML pipelines. ML pipelines in real-world
applications often suffer from a variety of data-related issues. Ex-
amples for such hard-to-detect issues include data leakage [7] from
train to test data and label errors [8] in training samples, which
negatively impact the accuracy of a pipeline, as well as fairness
violations [2] which result in biased predictions for particular de-
mographic groups. In practice, such pipeline issues are usually only
detected in hindsight after deployment, after they already caused
harm in production (such as faulty predictions), and need to be

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9507-6/23/06.
https://doi.org/10.1145/3555041.3589682

urgently addressed in an ad-hoc fashion, requiring a lot of time,
expertise and extra code. Unfortunately, existing ML management
platforms like mlflow [14] lack support for detecting and debugging
such issues, because they do not support record-level provenance
and do not understand the semantics of operations in ML pipelines.

Proactive pipeline screening with ArgusEyes. We postulate
that data scientists require system support to be able to proactively
screen their ML pipelines in an automated fashion. This enables
them to catch data-related issues early before deployment, and
reduce the incurred manual effort for fixing them. For that, we
demonstrate the recently proposed ArgusEyes1 system [11]. As we
detail in Section 2, our system enables data scientists to proactively
screen their ML pipelines for data-related issues as part of continuous
integration. They can declaratively specify a variety of pipeline
issues that they are concerned about. Subsequently, ArgusEyes
instruments, executes and screens the pipeline for the configured
pipeline issues, to catch potential problems early before deployment
to production. In contrast to existing ML platforms, ArgusEyes
tracks record-level provenance [5] and understands the seman-
tics of individual pipeline operations, which enables it to reason
about complex dependencies between the inputs and outputs of
ML pipelines. ArgusEyes leverages mlinspect [4] to instrument
ML pipelines for supervised learning, which are natively written in
Python and contain known operations from popular data science
libraries such as pandas, scikit-learn or keras. Note that mlinspect
focuses on local, operator-centric data debugging, whileArgusEyes
enables holistic pipeline debugging, to detect issues which require
reasoning about complex interactions between the inputs and the
model of an ML pipeline (e.g., detecting label errors).
Demonstration details. We demonstrate ArgusEyes in three dif-
ferent scenarios, with pipelines created from real-world code from
the keras [3], OpenML [12] and mlflow [14] projects, consuming
both tabular and image data. Each scenario focuses on a particu-
lar issue to detect. During the demonstration, we will explain the
pipeline, show how to detect the underlying issue with ArgusEyes,
and walk attendees through a retrospective analysis of the pipeline
artifacts captured by ArgusEyes to fix the pipeline issue (Section 3).
In particular, we demonstrate how to detect mislabeled images in
a computer vision pipeline, how to spot data leakage in a price
prediction pipeline and how to detect fairness violations in a credit
scoring pipeline. We provide a fully working implementation of
the pipelines and screening, integrated with Github workflows at
https://github.com/amsterdata/arguseyes-demo.

1https://github.com/amsterdata/arguseyes

https://doi.org/10.1145/3555041.3589682
https://github.com/amsterdata/arguseyes-demo
https://github.com/amsterdata/arguseyes

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Schelter et al.

pipeline: my-pipeline.py
template: classification
detect_issues:
 - issue: label_errors
 max_fraction: 0.03
 - issue: data_leakage

Data Scientist

my-pipeline.py

Github Repository

The data scientist
declaratively specifies
issues to screen for in
a configuration file

1

screen-my-pipeline.yaml

The data scientist
commits a change to
the ML pipeline code
in a Github repository

2

Data Leakage?
Fairness Violation?

Label Errors?

triggered by  
code commit

Data Exploration
Provenance Analysis
Fairness Metrics
Data Valuation

Code commits
trigger pipeline
screening via
Github Actions

3

ArgusEyes stores
metadata, data artifacts
and provenance in an
experiment database

4

ArgusEyes fails the
build if it finds pipeline
issues during screening

5

ArgusEyes assists
data scientists with
the retrospective
analysis of pipeline
issues

6

Retrospective

ArgusEyes

Pipeline Screening

Figure 1: Proactive pipeline screening with ArgusEyes as part of a continuous integration workflow on Github.

2 SYSTEM OVERVIEW

ArgusEyes [11] is implemented in Python and builds upon our
previous work mlinspect [4], a library to instrument ML pipelines.
ArgusEyes handles ML pipelines for supervised learning, imple-
mented as Python scripts leveraging known operations from pop-
ular data science libraries such as pandas, sklearn, or keras. Ar-
gusEyes models ML pipelines as a dataflow computation from
relational inputs to matrix outputs for the features, labels and
predictions of the model trained by the pipeline, based on prede-
fined pipeline “templates” for classification and regression tasks [4,
11]. It executes and instruments ML pipelines, and captures input
data and intermediates, as well as their corresponding record-level
provenance, and stores these artifacts in the experiment database
mlflow [14]. Its core novelty over existing ML management plat-
forms is to analyze record-level “why-provenance” [5] (e.g., the
information which input records were used to compute a partic-
ular output) to detect a wide variety of issues in ML pipelines2,
which arise from dependencies between pipeline artifacts such
as relational inputs, computed feature matrices, labels and model
predictions.
Pipeline screening as part of continuous integration. The
main use case of ArgusEyes is to be run as part of continuous
integration, in order to alert data scientists and data engineers
early (before the deployment of a pipeline change to production)
in case of detected errors. Subsequently, it allows them to analyze
the root cause of detected issues retrospectively based on captured
intermediates and metadata from the pipeline. Figure 1 gives an
overview over the integration of ArgusEyes into a data science
development workflow: 1 We assume that the data science team
already leverages a Github repository for their ML pipeline code.
They can integrate ArgusEyes into their build process via Github
workflows3 and declaratively specify their pipeline and issues to
screen for in a .yaml configuration file (without having to change

2https://github.com/amsterdata/arguseyes/tree/main/arguseyes/issues
3https://docs.github.com/en/actions/using-workflows/about-workflows

the pipeline code). 2 Due to the integration with Github work-
flows, code commits to the repository will automatically trigger
ArgusEyes; 3 Next, ArgusEyes runs within a Github action: it
instruments and executes the specified ML pipeline, screens it for
the configured issues, and 4 stores metadata, data artifacts and
provenance information in the experiment database mlflow [14].
If ArgusEyes encounters issues during screening 5 , it will auto-
matically fail the Github build. Subsequently, ArgusEyes assists
the data scientists with a retrospective analysis of the pipeline run
(and stored artifacts) within a Jupyter notebook 6 with debugging
functionality tailored to the detectable issues.

3 DEMONSTRATION DETAILS

Approach. In order to demonstrate ArgusEyes, we design three
scenarios, each containing a particular ML pipeline based on exist-
ing code and focusing on a particular issue to detect. We setup a
Github repository at https://github.com/amsterdata/arguseyes-demo,
which contains the source code and data of the pipelines for the
scenarios, and integrates the screening of these pipelines with Ar-
gusEyes via a Github workflow. We demonstrate each scenario as
follows:
(1) We briefly introduce the ML pipeline for the given scenario and

the pipeline issue that occurs.
(2) Next, we run ArgusEyes to screen the pipeline and showcase

that it detects the given issue.
(3) We demonstrate how to conduct a retrospective analysis of

the pipeline run with ArgusEyes and Jupyter to determine the
root cause of issue. For that, ArgusEyes allows us to interac-
tively explore the execution plan and intermediate data from
the pipeline (as illustrated in Figure 3). Additionally, it provides
custom code for analyzing particular issues like label errors,
data leakage or fairness violations.

(4) Finally, we showcase how to change the pipeline code (based
on insights from the retrospective analysis) to fix the detected
issue in the pipeline.

https://github.com/amsterdata/arguseyes/tree/main/arguseyes/issues
https://docs.github.com/en/actions/using-workflows/about-workflows
https://github.com/amsterdata/arguseyes-demo

Proactively Screening Machine Learning Pipelines with ArgusEyes SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

Figure 2: Github integration – Pipeline screening during the build process executed with a github workflow. ArgusEyes fails

the build as it detects a high amount of label errors in the data.

In detail, we demonstrate the following three scenarios:
Scenario 1: Mislabeled images in a computer vision pipeline.
Our first scenario evolves around a computer vision pipeline based
on code from keras [3]. The pipeline trains a convolutional neural
network to identify fashion products, in particular to distinguish
between images of sneakers and ankle boots from the FashionMNIST
dataset. The pipeline consumes three input tables, filters the data
based on the product category, and applies common image-specific
preprocessing operations such as normalization of the pixel values.
Issue to detect. The training images for the pipeline contain a large
amount of label errors [8], e.g., images which are labeled with the
wrong product category. These mislabeled training samples have
a strong negative impact on the accuracy of the learned neural

Figure 3: Interactive exploration of the intermediate data

from a pipeline for retrospective analysis.

network. We showcase how ArgusEyes identifies such label errors
by computing Shapley values [6] for the featurized training samples.

Figure 4: Label errors – ArgusEyes automatically detects

mislabeled product images in a computer vision pipeline

(left: ankle boots mislabeled as sneakers, right: sneakers mis-

labeled as ankleboots).

Retrospective analysis and fix. Next, we detail how to retrospectively
analyze the pipeline and identify the mislabeled images.ArgusEyes
allows attendees to retrieve a copy of the input tuples stored in
mlflow, annotated with the corresponding Shapley values, which
denote their estimated “value” for the final classifier. By selecting
and plotting the input images with negative Shapley values (which
indeed have the wrong category information, as shown in Figure 4),
attendees can confirm the label errors and identify the images to
relabel. Finally, we show that rerunning the pipeline with cleaned
inputs results in an improvement in the accuracy of the neural
network.

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Schelter et al.

Scenario 2: Data leakage in a price prediction pipeline. Our
second scenario concerns a pipeline that trains a regression model
for predicting the price of taxi rides in New York, based on code
from the mlflow [14] project. The pipeline consumes a single input
dataset about the times and locations of taxi rides, filters it and
computes several new features. Next, it splits the data into train
and testset based on the drop-off times in the data, and trains and
evaluates a regression model to predict the price of rides.
Issue to detect. The pipeline suffers from data leakage [7]: several
training samples are accidentally included in the test set as well,
leading to an unrealistic, overly optimistic accuracy score of the
classifier. This is due to a faulty predicate used for conducting the
train/test split, which has the effect that the samples from the last
day of the train set are also included in the test set.

Figure 5: Data leakage – ArgusEyes allows attendees to iden-

tify and analyze input tuples of a pipeline that were acciden-

tally leaked from the train to the test set.

Retrospective analysis and fix. ArgusEyes allows data scientists to
retrospectively analyze the run of the price prediction pipeline.
We demonstrate how to leverage ArgusEyes to compute the set
of leaked input tuples, and interactively analyze them (Figure 5.
This exploratory analysis shows that they all originate from the
same drop-off day of the ride. Based on that, attendees can identify
and fix the faulty predicate in the pipeline code, and verify with
ArgusEyes that the leakage problem goes away after that.
Scenario 3: Fairness violations in a credit scoring pipeline.
Our third scenario evolves around a credit scoring pipeline, based
on code from the OpenML project [12]. The pipeline operates on
demographic information about income, stored in seven different
tables, joins and filters this data based on a predefined set of em-
ployment types, and trains a decision tree model to predict whether
a person has a high or low income (as a proxy for creditworthiness).
Issue to detect. We demonstrate how to leverageArgusEyes to detect
fairness violations with respect to different groups in the data (e.g.,
male compared to non-male persons). ArgusEyes allows attendees
to define such groups, and specify a fairness metric and a threshold
for the maximum difference in the metric. ArgusEyes will auto-
matically compute the fairness metric for the defined groups and
fail the build if the difference in the metric is larger than the con-
figured threshold. In our demonstration, we show that the pipeline
produces unfair predictions for female persons with respect to the
“equal opportunity” metric, which measures the difference in recall
between the demographic groups.

Figure 6: Fairness analysis – ArgusEyes allows attendees to

inspect the confusion matrices for demographic groups in

the input data, based on the pipeline’s predictions.

Retrospective analysis and fix. We showcase how attendees can lever-
age ArgusEyes to retrieve fairness statistics about the pipeline run,
compute detailed confusion matrices for the predictions per group
(as shown in Figure 6), and to compute and plot different fairness
metrics. Furthermore, we show that the fairness violation can be
fixed by increasing the training data, in particular by including
samples from a more diverse set of employment types.
Interactivity. Our demonstration will be executed with a code
editor for the ML pipelines, a shell to run ArgusEyes and an in-
teractive notebook for the retrospective analysis. Attendees can
interact with our demonstration in several ways: (𝑖) they can sug-
gest changes to the pipeline code to introduce or fix certain pipeline
issues and rerun ArgusEyes to screen for these issues; (𝑖𝑖) they
can suggest and explore changes to the screening configuration in
ArgusEyes, e.g., to modify the tolerable amount of label errors or
to define additional groups for fairness analysis, and (𝑖𝑖𝑖) during
the retrospective analysis of pipeline runs in a notebook, attendees
can suggest and try different analysis steps. Moreover, attendees
with their own laptop can clone our github repository and run and
change the demonstration scenarios themselves.
Acknowledgements. This work was supported by Ahold Delhaize.
All content represents the opinion of the authors, which is not necessar-
ily shared or endorsed by their respective employers and/or sponsors.

REFERENCES

[1] Anaconda.com. 2020. The State of Data Science 2020. https://www.anaconda.
com/state-of-data-science-2020.

[2] Irene Chen et al. 2018. Why is my classifier discriminatory? NeurIPS (2018).
[3] François Chollet et al. 2015. Keras. https://keras.io.
[4] Stefan Grafberger et al. 2022. Data distribution debugging in machine learning

pipelines. VLDB Journal (2022).
[5] Todd J Green et al. 2007. Provenance semirings. PODS (2007).
[6] Ruoxi Jia et al. 2019. Efficient task-specific data valuation for nearest neighbor

algorithms. VLDB (2019).
[7] Sayash Kapoor et al. 2022. Leakage and the Reproducibility Crisis in ML-based

Science. arXiv preprint arXiv:2207.07048 (2022).
[8] Curtis G Northcutt et al. 2021. Pervasive label errors in test sets destabilize

machine learning benchmarks. NeurIPS (2021).
[9] Neoklis Polyzotis et al. 2017. Data management challenges in production machine

learning. SIGMOD (2017).
[10] Sebastian Schelter et al. 2015. On challenges in machine learning model manage-

ment. IEEE Data Engineering Bullettin (2015).
[11] Sebastian Schelter et al. 2022. Screening Native ML Pipelines with “ArgusEyes”.

CIDR (2022).
[12] Joaquin Vanschoren et al. 2014. OpenML: networked science in machine learning.

KDD (2014).
[13] Doris Xin et al. 2021. Production machine learning pipelines: Empirical analysis

and optimization opportunities. SIGMOD (2021).
[14] Matei Zaharia et al. 2018. Accelerating the machine learning lifecycle with

MLflow. IEEE Data Engineering Bullettin 41, 4 (2018), 39–45.

https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020
https://keras.io

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration Details
	References

