
“Amnesia” – Towards Machine Learning Models That Can
Forget User Data Very Fast

Sebastian Schelter
New York University

sebastian.schelter@nyu.edu

ABSTRACT
Software systems that learn from user data with machine
learning (ML) techniques have become ubiquitous over the
last years. Recent law requires companies and institutions
that process personal data to delete user data upon request
(enacting the “right to be forgotten”). However, it is not suf-
ficient to merely delete the user data from databases. ML
models that have been learnt from the stored data can be
considered a lossy compressed version of the data, and there-
fore it can be argued that the user data must also be removed
from them. Typically, this requires an inefficient and costly
retraining of the affected ML models from scratch, as well
as access to the original training data.
We address this perfomance issue by formulating the prob-
lem of “decrementally” updating trained ML models to “for-
get” the data of a user, and present efficient decremental
update procedures for three popular ML algorithms. In an
experimental evaluation on synthetic data, we find that our
decremental update is two orders of magnitude faster than
retraining the model without a particular user’s data in the
majority of cases.

1. INTRODUCTION
Software systems that learn from user data with machine
learning (ML) techniques have become ubiquitous over the
last years [13]. Recent laws such as the General Data Protec-
tion Regulation (GDPR) and the “right to be forgotten” re-
quire companies and institutions that process personal data
to delete user data upon request [6]. However, it is not suf-
ficient to merely delete this user data from primary data
stores such as databases. ML models that have been learnt
from the stored data can be considered a lossy compressed
version of the data, and it can therefore be argued that the
user data must also be removed from them. While relational
databases offer transactional deletes and corresponding up-
dates for materialized views over the data [8], there exists no
such automated deletion mechanism for ML models derived
from the data. Instead, the deletion of user data typically
requires an inefficient and costly retraining of the affected

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and AIDB 2019.
1st International Workshop on Applied AI for Database Systems and Appli-
cations (AIDB’19), August 26, 2019, Los Angeles, California, CA, USA.

ML models from scratch on the original training data, for
example on a nightly basis.
We propose to alleviate this problem by describing how to
“decrementally” update a selection of trained ML models in
an efficient way, such that they “forget” the user data. In
other terms, the decrementally updated model is identical to
a model that would have been trained from scratch without
the data of the user to remove. We formalize this problem
in Section 2, and describe efficient decremental update pro-
cedures for three ML algorithms from different ML domains
(recommendation, classification, regression) in Section 2.1.
Our approach is applicable to a family of simple ML models
with non-iterative training, which either exhibit sparse com-
putational dependencies between the model and the data,
or have an efficient update procedure for their closed form
solution. We experimentally evaluate our approach on syn-
thetically generated datasets in Section 4.
In summary, we provide the following contributions:
• We introduce the problem of making trained ML models

“forget” user data via decremental updates (Section 2).
• We describe decremental update procedures for three al-

gorithms from different ML domains (recommendation,
classification, regression) which do not require access to
the original training data (Section 2.1).
• We conduct an experimental evaluation on synthetic data,

and find that our decremental update is two orders of
magnitude faster than model retraining in the majority of
cases (Section 4).

2. APPROACH
We first formalize the problem of efficient “decremental” up-
dates for having models forget data. Afterwards we describe
decremental update procedures for three popular ML algo-
rithms in detail.

Problem Statement. Let tlearn(D, θ) denote a procedure
to learn an ML model f (such as a classifier) from training
data D with hyperparameters θ. Let D = {d1,d2, . . . ,dm}
denote the data of m users (our training data), and let
f = tlearn(D, θ) denote the ML model learnt from the user
data D. Now, assume that we are required to delete the
data dm of the m-th user from the model. That means we
are interested in obtaining another ML model f ′ = tlearn(D\
{dm}, θ), which never saw the data dm of user m during its
training. This new model can be trivially obtained by re-
peating the training procedure tlearn on D\{dm}. Conduct-
ing a complete model retraining might however be inefficient
and costly in many cases, and we can assume that the loss of

1

data from a single user (or a handful of users) does not signif-
icantly change the predictive power of the model, or require
a different choice of hyperparameters. Instead, we would be
interested in an efficient procedure tforget that can inspect
dm and update the existing model f to the desired model
f ′, such that f ′ = tforget(f, {dm}, θ) = tlearn(D \ {dm}, θ).
This approach is refered to as “decremental learning” in the
ML literature [1]. In summary, the decremental update pro-
cedure tlearn must satisfy the following property:

tforget(tlearn(D, θ), {dm}, θ) = tlearn(D \ {dm}, θ)

(and provide a runtime for tforget that is much smaller than
the runtime of tlearn for retraining). This approach bears
some resemblance to online learning, where we incremen-
tally update an existing model with new observations. A
major difference is that we not only need a merge operation
to integrate updates into the global result, but also an in-
verse operation to remove such updates. This is problematic
for learning algorithms such as gradient descent (which nat-
urally supports online learning), as they compute a fixpoint
using a series of global aggregations on all input tuples in
every step, where the result of each iteration depends on all
tuples and all previous results. We therefore focus on non-
iterative ML algorithms which exhibit sparse computational
dependencies [5, 15] or have a closed form analytical solu-
tion. Our approach is based on the general idea of having
the algorithm retain intermediate results during the model
computation, which can be efficiently updated in a decre-
mental manner later on.
A major operational advantage of our proposed approach is
that tforget does not require access to the original training
data D, which simplifies the integration of our approach into
complex real-world ML deployments.

2.1 Decremental Update Procedures
In the following, we detail three algorithms for different ML
tasks (recommendation, regression, classification) and de-
scribe efficient decremental update procedures for them.

Recommender Systems: Item-Based Collaborative
Filtering. Item-based collaborative filtering [12, 14] is a
recommendation approach, which compares user interactions
to find related items in the sense of: ‘people who like this
item also like these other items’. In a movie recommen-
dation case for example, the system records which movies
often cooccur in the viewing histories of users. These pairs
of cooccurring movies are then ranked and form the basis for
recommendations later on. In its simplest form, the input
data for an item-based recommender comprises of a binary
history matrix H ∈ {0, 1}|U|×|I| which denotes the observed
interactions between a set of users U and a set of items I.
An entry Hji equals 1 if user j interacted with item i, and 0
otherwise. Such binary observation data can be easily gath-
ered by recording user actions (such as purchases in online
shops or plays of a video on a movie platform).

Model & Inference. The model of an item-based recom-
mender comprises of a similarity matrix S ∈ R|I|×|I| which
denotes the interaction similarity between pairs of items.
A common way to train this model is to first compute a
cooccurrence matrix C = H>H which denotes how many
users interacted with each pair of items. Additionally, we
need a vector n =

∑
j∈U Hj denoting the number of interac-

tions per item (the row sums of H). Next, we can compute

the similarity matrix S by inspecting cooccurrence counts.
Many similarity measures between items can be computed
from the cooccurrence matrix [14]. A popular choice is the
Jaccard similarity Si1i2 between items i1 and i2, computed
via Si1i2 = Ci1i2/(ni1 + ni2 − Ci1i2). Recommendations
can be retrieved by querying the similarity matrix S. We
retrieve item-to-item recommendations by querying for the
most similar items per item, and generate items to recom-
mmend for a particular user by computing preference esti-
mates via a weighted sum between item similarities and the
corresponding user history [12].

Removal of user data. In the following we assume that we
have an existing recommendation model with its intermedi-
ate data structures: the item cooccurrence matrix C, the
item interaction count vector n and the item similarity ma-
trix S. We now wish to remove the data of the u-th user
from the model, which corresponds to the u-th row Hu of
the user-item interaction matrix H. Algorithm 1 details how
to update the intermediates to remove the user data from
the model. We loop over all pairs of items (i1, i2) in the user
history Hu and decrement the corresponding cooccurrence
count Ci1i2 . Finally, we iterate over each item j1 in the
user history and recompute its corresponding row Sj1 in the
similarity matrix.

Algorithm 1 Decremental update procedure for removing
the effects of the user history Hu from an item-based rec-
ommendation model.
Input: item cooccurrence matrix C
Input: item interaction counts n
Input: item similarity matrix S
Input: user history to remove Hu

1: n← n−Hu

2: for item pair (i1, i2) ∈ Hu do
3: Ci1i2 ← Ci1i2 − 1
4: end for
5: for item j1 ∈ Hu do
6: for item j2 ∈ Cj1 do
7: Sj1j2 ← Cj1j2/(nj1 + nj2 − Cj1j2)
8: end for
9: end for

Regression: Ridge Regression. Ridge regression [9] is a
widely used technique to predict a continous target variable
in regression scenarios. The input data to the regression
model is a matrix X ∈ Rm×d of m d-dimensional observa-
tions, and a corresponding numeric target variable y ∈ Rm.
Without loss of generality, we assume that the data of a
particular user i is captured in the i-th row vector Xi of
the input (if more than one row would denote data about a
particular user, we could simply run the decremental update
procedure several times.)

Model & Inference. A common way to compute a ridge
regression model in the form of the weight vector w is to
solve the normal equation w = (X>X + λI)−1X>y, e.g.,
via QR or LU factorization. The regularization constant
λ is typically selected via cross-validation. The regression
estimate ŷnew for a new observation xnew can be computed
via its dot product with the weight vector: ŷnew = w>xnew.

Removal of user data. We detail how to remove the data of
a user u (in the form of the u-th row Xu of the observation
matrix X) from a ridge regression model in Algorithm 2.

2

We aim for an efficient way to compute

w = (X>X−X>u Xu + λI)−1(X>y −Xuyu)

We therefore maintain the following intermediates from the
computation: the vector z = X>y and a QR factorization
QR = qr(X>X + λI) of the regularized gram matrix. We
can now recompute z by subtracting Xuyu, and we invoke a
fast rank-one update algorithm with −X>u Xu as argument
to update the QR decomposition Q, R [2]. Afterwards,
we can efficiently solve for the updated model w by back
substitution.

Algorithm 2 Decremental update procedure for removing
the effects of user data Xu from a ridge regression model.

Input: z← X>y
Input: QR← qr(X>X + λI)
Input: user observation Xu to remove
1: z← z−Xuyu
2: QR← qr update(Q,R,−Xu,Xu)
3: solve Rw = Q>z for w via back substitution

Classification: k-Nearest Neighbors with Locality
Sensitive Hashing. Our last example leverages a nearest
neighbor-based classification algorithm, which assigns the
label of the k nearest neighbors to an unknown observation.
It applies a common approximation technique to speed up
the search for the nearest neighbors called locality sensi-
tive hashing (LSH) [7]. The input data for the classifier
comprises of a matrix X ∈ Rm×d of m d-dimensional ob-
servations, and the target variable y ∈ {1, . . . , c}m which
denotes the assignments of the corresponding c categorical
labels. We again assume that each row Xi corresponds to
observations for a particular user i.

Model & Inference. The algorithm leverages approximate
similarity search in a high-dimensional space by building an
index over the data. This index comprises of several hash ta-
bles where observations which are close in terms of Euclidean
distance have a high chance of ending up in the same hash
bucket. We leverage random projections as hash function
to compute the bucket indexes. We compute H hash tables
T1, . . . , TH with b-dimensional bucket indexes. We generate
a Gaussian random matrix Ωh for each hash table Th, and
leverage this matrix to conduct a random projection of our
data via sgn(XΩh). The resulting bit vectors denote the
hash keys, and we assign each row Xi from X to its corre-
sponding bucket with key sgn(XiΩh) in the hash table Th.
In order to assign a label to an unseen observation Xnew, we
collect its nearest neighbors as follows. For each hash table
Th, we compute the bucket index bh = sgn(XnewΩh), and
collect all observations from this bucket. Next, we compute
the k exact nearest neighbors of Xnew in the retrieved ob-
servations, and assign the majority label from these as the
the predicted label ŷnew to Xnew.

Removal of user data. Removing an existing obervation Xu

for a user u from our index works as depicted in Algorithm 3.
We compute the bucket index buh of Xu via the random
projection sgn(XuΩh), and remove Xu from bucket buh in
hash table Th.

Algorithm 3 Decremental update procedure for removing
the user data xu from an index for approximate k-NN.

Input: hash tables T1, . . . , Th

Input: projection matrices Ω1, . . . ,Ωh

Input: observation Xu to remove
1: for h = 1 . . . H do
2: buh = sgn(XuΩh)
3: remove Xu from bucket buh in hash table Th

4: end for

3. RELATED WORK
Ensuring that data processing technology adheres to legal
and ethical standards in a fair and transparent manner [16]
is an important research direction, which starts to gain a lot
of attention from law makers and goverments.. The machine
learning community has pioneered some work on removing
data from models under the umbrella of “decremental learn-
ing”for support vector machines [1, 10]. In contrast to our
work, these approaches need to re-access the training data
for updating the model. An orthogonal technique to pro-
tect the privacy of user data in machine learning use cases
is differential privacy [4]. In contrast to our presented ap-
proach, it is very difficult to design differentially private al-
gorithms (even for experts [3]), and this approach requires
a difficult decision on the limit on the acceptable privacy
loss in practice. On the technical side, the approach used
in this paper bears resemblance to general approaches for
incremental data processing [5, 11, 15, 8] with the difference
that it requires inverse operations for removing data, which
are not covered in many existing approaches.

4. EVALUATION
We implement our algorithms together with their decremen-
tal update procedures using numpy and Python data struc-
tures. We put a more efficient C or Rust implementation
aside for future work, as our main aim is to showcase the
runtime difference originating from the different algorithmic
approaches (retraining vs. decremental update). We gener-
ate various synthetic datasets for each presented algorithm
from Section 2.1, and train a model on each such dataset.
Next, we measure the time to update the model to “forget”
a random user versus the time to retrain the model from
scratch without the data of that particular user. We repeat
every experiment six times and report the mean runtime as
well as its standard deviation in Figure 1. Note that the
runtime on the y-axis is displayed on a logarithmic scale.

Item-Based Collaborative Filtering. We generate syn-
thetic interaction data by sampling from two independent
two-parameter Poisson–Dirichlet distributions with α = 6000
and d = 0.3, which are helpful for simulating powerlaw dis-
tributed data. We generate datasets with 10,000, 20,000,
50,000, and 100,000 interactions, and compare the time to
retrain the model without a random user to the decremental
update time for removing the interactions of the particular
user (Figure 1(a)). In each experiment, the decremental
update is at least two orders of magnitude faster than re-
training the model as a whole, and the runtime difference
increases with the size of the input data.

3

10000 20000 50000 100000
interactions

10 1

100

101

102

103
ru

nt
im

e
(m

s)
retrain
decremental

(a) Item-Based Collaborative Filtering.

50
00

0x
10

0

50
00

0x
50

0

50
00

0x
10

00

10
00

00
x1

00

10
00

00
x5

00

10
00

00
x1

00
0

input dimensions

101

102

103

ru
nt

im
e

(m
s)

(b) Ridge Regression.

50
00

0x
10

0

50
00

0x
50

0

50
00

0x
10

00

10
00

00
x1

00

10
00

00
x5

00

10
00

00
x1

00
0

input dimensions

100

102

ru
nt

im
e

(m
s)

(c) k-Nearest Neighbors.

Figure 1: Comparison of the runtimes for removing a random user’s data from a trained ML model. “Retrain”
retrains a model from scratch without this user’s data, while “decremental” updates the trained model to
forget the user data. The runtime is displayed on a logarithmic scale.

Ridge regression. We generate synthetic data in different
shapes (varying the number samples from 50,000 to 100,000
and the number of features from 100 to 500 to 1,000) us-
ing the datasets.make regression function from the scikit-
learn library to generate synthetic regression problems. We
compare the time to retrain the model without a randomly
picked user to the decremental update time for removing this
particular user (Figure 1(b)). In each experiment, the decre-
mental update is at least one order of magnitude faster than
retraining, and we observe that the difference increases with
growing data sizes. Additionally, we see that the runtime
depends on both the number of samples and the number of
features.

k-Nearest Neighbors. We again generate synthetic data
in different shapes (varying the number samples from 50,000
to 100,000 and the number of features from 100 to 500 to
1,000). We leverage the datasets.make classification

function from scikit-learn to generate synthetic classifica-
tion problems. We again compare the time to retrain the
model without the data of a randomly chosen user to the
decremental update time for removing this particular user’s
data (Figure 1(c)). We find that the runtime of the decre-
mental update is two to three orders of magnitude less than
the time required to retrain the model. Additionally, the
runtime is independent of the number of samples, and only
depends on number of features (which dictates the cost of
the random projection).

Summary. In short, the results confirm our expectations
for decremental updates: the updates are at least two orders
of magnitude faster than retraining in cases where the al-
gorithms exhibit sparse computational dependencies (item-
based collaborative filtering and k-nearest neighbors), and
one order of magnitude faster for algorithms where we need
to update the whole model such as ridge regression.

5. CONCLUSION & FUTURE WORK
We described decremental update procedures for three trained
ML models to make them efficiently “forget” the data of a
user to remove. In future work, we aim to formalize the
required algorithmic properties for our approach using the
framework of differential computation and algebraic struc-
tures like monoids [11]. We will quantify the size of the
required data structures as a function of the input data and
describe the complexity of the update operations. Addition-

ally, we will present decremental update procedures for more
algorithms, evaluate them on real-world data and discuss
how to integrate our approach with relational databases.

6. REFERENCES
[1] G. Cauwenberghs and T. Poggio. Incremental and

decremental support vector machine learning. NeurIPS,
pages 409–415, 2001.

[2] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W.
Stewart. Reorthogonalization and stable algorithms for
updating the gram-schmidt qr factorization. Mathematics
of Computation, 30(136):772–795, 1976.

[3] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer.
Detecting violations of differential privacy. CCS, 2018.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
Theory of Cryptography, pages 265–284, 2006.

[5] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. PVLDB,
5(11):1268–1279, 2012.

[6] GDPR.eu. Recital 65: Right of rectification and erasure.
https://gdpr.eu/
recital-65-right-of-rectification-and-erasure/.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. PVLDB, pages 518–529, 1999.

[8] A. Gupta, I. S. Mumick, et al. Maintenance of materialized
views: Problems, techniques, and applications. IEEE Data
Engineering Bulletin, 18(2):3–18, 1995.

[9] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970.

[10] M. Karasuyama and I. Takeuchi. Multiple incremental
decremental learning of support vector machines. NeurIPS,
pages 907–915, 2009.

[11] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. CIDR, 2013.

[12] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al.
Item-based collaborative filtering recommendation
algorithms. WWW, pages 285–295, 2001.

[13] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, and
S. Seufert On challenges in machine learning model
management. IEEE Data Engineering Bulletin, 2018.

[14] S. Schelter, C. Boden, and V. Markl. Scalable
similarity-based neighborhood methods with mapreduce.
ACM RecSys, pages 163–170, 2012.

[15] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. All roads
lead to rome: optimistic recovery for distributed iterative
data processing. CIKM, pages 1919–1928, 2013.

[16] J. Stoyanovich, S. Abiteboul, and G. Miklau. Data,
responsibly: Fairness, neutrality and transparency in data
analysis. EDBT, 2016.

4

https://gdpr.eu/recital-65-right-of-rectification-and-erasure/
https://gdpr.eu/recital-65-right-of-rectification-and-erasure/

	Introduction
	Approach
	Decremental Update Procedures

	Related Work
	Evaluation
	Conclusion & Future Work
	References

