
“Amnesia” - A Selection of Machine Learning Models
That Can Forget User Data Very Fast

Sebastian Schelter
New York University

sebastian.schelter@nyu.edu

ABSTRACT
Software systems that learn from user data with machine
learning (ML) have become ubiquitous over the last years.
Recent law requires organisations that process personal data
to delete user data upon request (enacting the “right to be
forgotten”).
However, it is not sufficient to merely delete the user data
from databases. ML models that have been learnt from the
stored data often resemble a lossy compressed version of the
data. We therefore argue that the user data should also
be removed from ML models due to potential privacy risks.
Typically, this requires an inefficient and costly retraining
of the affected ML models from scratch, where the training
infrastructure has to re-access the original training data and
redeploy the retrained model.
We address this performance and operational issue by for-
mulating the problem of “decrementally” updating trained
ML models to “forget” the data of a user, without the need
to re-access the training data. We present efficient decre-
mental update procedures for a selection of four popular
ML algorithms, together with Rust-based single-threaded
implementations.
In an experimental evaluation on nine real world datasets,
we find that our decremental update approach is several or-
ders of magnitude faster than model retraining in the major-
ity of cases. We additionally describe parallel implementa-
tions of our update procedures in Differential Dataflow and
discuss the limitations of our approach.

1. INTRODUCTION
Software systems that learn from user data with machine
learning (ML) have become ubiquitous over the last years [24],
and participate in many critical decision making processes,
e.g., to decide about loans, job applications and medical
treatments. Recent laws such as the General Data Protec-
tion Regulation (GDPR) and the “right to be forgotten” re-
quire companies and institutions that process personal data
to delete user data upon request [11]. We argue that it is not
sufficient to merely delete this user data from primary data

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020, Amsterdam, Netherlands.

stores such as databases. ML models that have been learnt
from the stored data resemble a lossy compressed version of
the data in many cases. Not updating these models might
introduce a privacy risk, e.g., when the ML model can be
leveraged to make elaborate guesses about the deleted data
(or even to restore it). We discuss an example of such a case
in Section 2.
While relational databases offer transactional deletes and
corresponding updates for materialized views [14] over the
data, there exists no such automated deletion mechanism
for ML models derived from the data. Instead, the dele-
tion of user data typically requires an inefficient and costly
retraining of the affected ML models from scratch on the
original training data, for example on a nightly basis. This
retraining is especially complicated from an operational per-
spective, as the training infrastructure has to reaccess the
training data, and redeploy the retrained model afterwards.
We propose to alleviate this problem by describing how to
“decrementally” update a selection of trained ML models in
an efficient way, such that they “forget” the user data. In
other terms, the decrementally updated model is identical to
a model that would have been trained from scratch without
the data of the user to remove.
We formalize this problem in Section 3, and describe effi-
cient decremental update procedures for four ML algorithms
from different ML domains (recommendation, classification,
regression) in Section 3.2. We experimentally evaluate our
approach on nine real world datasets in Section 6. Our ap-
proach is applicable to a family of ML models with non-
iterative training, which exhibit sparse computational de-
pendencies [3, 9] between the model and the data. We dis-
cuss the generality of our approach in Section 7.

In summary, we provide the following contributions:
• We introduce the problem of making select trained ML

models“forget”user data via decremental updates without
reaccessing the training data (Section 3).
• We describe corresponding decremental update procedures

for four algorithms from different ML domains (recom-
mendation, classification, regression) (Section 3.2).
• We provide single-threaded and dataflow implementations

our proposed algorithms (Section 4).
• We conduct an experimental evaluation on nine real world

datasets, and find that our decremental update is several
orders of magnitude faster than model retraining in the
majority of cases (Section 6).

2. NEGATIVE PRIVACY IMPLICATIONS
We outline the potential privacy implications posed by not
updating ML models after data removal on a fictitious exam-
ple scenario, which leverages real world data. The Goodbooks
dataset1 contains six million ratings for ten thousand books
given by fifty thousand (deidentified) users. Consider user
51881 which has read the following four books: Thirteen
Reasons Why, Speak, All the Bright Places, My Heart and
Other Black Holes. This information is potentially sensitive
as all the books are dealing with the topic of teenage suicide
(and are tagged with suicide-notes in the dataset). This
user (or the parents of the user) might ask the data owner
to remove this sensitive information from their database,
e.g., under the legal umbrella of the “right-to-be-forgotten”
as part of the European General Data Protection Regula-
tion (GDPR) [11]. The data owner would implement this
by removing the records for the user from the books_read

table as shown in Figure 1.
However, the data owner might still have ML models that
have been learnt from the version of the database prior to
the removal of our user’s records. An example could be a
recommendation model built with user-based collaborative
filtering [17]. This model would maintain a matrix of sim-
ilarities between pairs of users, which can be leveraged to
recommend books to other users (e.g., by choosing books
from the reading histories of highly similar users). The sim-
ilarity of two users in this scenario could for example be
computed as the Jaccard similarity between their sets of
reading histories.
Unfortunately, such a user similarity matrix can be used to
make elaborate guesses about the (already deleted) reading
history of user 51881 as we show in Figure 1. The mean sim-
ilarity of our user to other users (as measured by a random
sample of 100 users) is only about 0.04. We can however
identify other users with significantly higher similarity by
inspecting the recommendation model: examples are user
8364 with a similarity of 0.197, user 44035 with a similarity
of 0.248 or user 46992 with a similarity of 0.207. If we in-
spect the intersection of the reading histories of these highly
similar users, we again encounter many occurrences of the
sensitive books that were contained in the deleted reading
history of user 51881: three occurrences of Thirteen Rea-
sons Why, two occurrences of Speak and one occurrence of
All the Bright Places. Based on this observation, we can
conclude that it is very likely that these books also existed
in the (now deleted) reading history of user 51881 and that
the high similarity in the recommendation model is a result
of the overlapping interest in books about teenage suicide.

3. APPROACH
In order to address the previously described privacy risks,
we develop methods to efficiently update trained ML models
after data removal. We first formalize the problem of effi-
cient “decremental” updates for having models “forget” data,
and describe decremental (and incremental) variants of four
popular ML algorithms in detail afterwards.

3.1 Problem Statement
Let tlearn(D, θ) denote a procedure to learn an ML model f
(such as a classifier) from training data D with hyperpa-
rameters θ. Let D = {d1,d2, . . . ,dm} denote the data of

1http://fastml.com/goodbooks-10k

books_read books

user_id book_id

... ...

51881 146

51881 233

51881 920

51881 5278

... ...

44035 146

44035 233

... ...

46992 146

46992 920

...

8364 146

8364 233

... ...

book_id title tags

...

146 Thirteen reasons why {suicide-notes, ...}

233 Speak {suicide-notes, ...}

920 All the bright places {suicide-notes, ...}

5278 My heart and other black holes {suicide-notes, ...}

...

... 8364 ... 44035 ... 46992 ...

...

51881 ... 0.197 ... 0.248 ... 0.207 ...

...

user similarity matrix from
recommendation model

Figure 1: Example scenario for negative privacy im-
plications of not updating trained ML models af-
ter data deletion. A recommendation model of user
similarities enables elaborate guesses about sensi-
tive deleted data (a reading history of books about
teenage suicide).

m users (our training data), and let f = tlearn(D, θ) denote
the ML model learnt from the user data D. Now, assume
that we are required to delete the data dm of the m-th user
from the model. That means we are interested in obtaining
another ML model f ′ = tlearn(D\{dm}, θ), which never saw
the data dm of user m during its training. This new model
can be trivially obtained by repeating the training procedure
tlearn on D \ {dm}.
Conducting a complete model retraining might however be
inefficient and costly in many cases, and we can assume
that the loss of data from a single user (or a handful of
users) does not significantly change the predictive power of
the model, or require a different choice of hyperparameters.
Instead, we would be interested in an efficient procedure
tforget that can inspect dm and update the existing model f
to the desired model f ′, such that f ′ = tforget(f, {dm}, θ) =
tlearn(D \ {dm}, θ). This approach is refered to as “decre-
mental learning” in the ML literature [5].
In summary, the decremental update procedure tforget must
satisfy the following property, and provide a runtime for
tforget that is much smaller than the runtime of tlearn for
retraining:

tforget(tlearn(D, θ), {dm}, θ) = tlearn(D \ {dm}, θ)

This approach bears some resemblance to online learning,
where we incrementally update an existing model with new
observations. A major difference is that we not only need
a merge operation to integrate updates into the global re-
sult, but also an inverse operation to remove such updates.
This is problematic for learning algorithms such as gradient
descent (which naturally supports online learning), as they
compute a fixpoint using a series of global aggregations on
all input tuples in every step, where the result of each iter-
ation depends on all tuples and all previous results.
Therefore, we focus on non-iterative ML algorithms which
exhibit sparse computational dependencies [9, 27]. We fur-
ther discuss the generality of our approach in Section 7.

http://fastml.com/goodbooks-10k

3.2 Decremental / Incremental Models
Our approach is based on the general idea of having the
training algorithm for an ML model retain intermediate re-
sults during the model computation, which can be efficiently
updated in both an incremental manner (to incorporate new
user data) as well as a decremental manner (to remove user
data) later on. In the following, we detail three algorithms
for different ML tasks (recommendation, regression, clas-
sification) and describe efficient incremental / decremental
update procedures for them. For each model, we describe
the decremental update via the FORGET function, the in-
cremental update via the PARTIAL-FIT function, and detail
how to derive predictions from it via the PREDICT function.

3.2.1 Item-Based Collaborative Filtering
(Recommender Systems)

Item-based collaborative filtering [23, 25] is a popular rec-
ommendation approach, which compares user interactions
to find related items in the sense of: ‘people who like this
item also like these other items’. In a movie recommen-
dation case for example, the system records which movies
often cooccur in the viewing histories of users. These pairs
of cooccurring movies are then ranked and form the basis for
recommendations later on. In its simplest form, the input
data for an item-based recommender comprises of a binary
history matrix H ∈ {0, 1}|U|×|I| which denotes the observed
interactions between a set of users U and a set of items I.
An entry Hji equals 1 if user j interacted with item i, and 0
otherwise. Such binary observation data can be easily gath-
ered by recording user actions (such as purchases in online
shops or plays of a video on a movie platform).

Model & Prediction. The model of an item-based recom-
mender comprises of a similarity matrix S ∈ R|I|×|I| which
denotes the interaction similarity between pairs of items.
A common way to train this model is to first compute a
cooccurrence matrix C = H>H which denotes how many
users interacted with each pair of items. Additionally, we
need a vector n =

∑
j∈U Hj denoting the number of in-

teractions per item (the row sums of H). Next, we can
compute the similarity matrix S by inspecting the cooccur-
rence counts. Many similarity measures between items can
be computed from the cooccurrence matrix [25]. A popular
choice is the Jaccard similarity Si1i2 between items i1 and
i2, computed via Si1i2 = Ci1i2/(ni1 + ni2 − Ci1i2). Rec-
ommendations can be retrieved by querying the similarity
matrix S. We retrieve item-to-item recommendations by
querying for the most similar items per item (e.g., by in-
voking the PREDICT function in Algorithm 1), and gener-
ate items to recommend for a particular user by computing
preference estimates via a weighted sum between item sim-
ilarities and the corresponding user history [23].

Decremental and incremental updates. We require the
following intermediate data structures to enable incremental
and decremental updates for the item-based recommender:
the item cooccurrence matrix C, the item interaction count
vector n and the item similarity matrix S.
The FORGET function in Algorithm 1 details how to remove
the data of the u-th user (which corresponds to the u-th
row Hu of the user-item interaction matrix H) from the
model. We loop over all pairs of items (i1, i2) in the user
history Hu and decrement the corresponding cooccurrence
count Ci1i2 . Finally, we iterate over each item i1 in the

user history and recompute its corresponding row Si1 in the
similarity matrix. The incremental update of the model,
illustrated in the PARTIAL-FIT function in Algorithm 1 works
analogously, with the difference that we increment (instead
of decrement) the cooccurrence counts.

Space and complexity. In general, an item-based recom-
mendation model consists of a similarity matrix S ∈ R|I|×|I|
which requires space quadratic in the number of items. The
intermediate data structures for the incremental/decremen-
tal variants double the required memory, as we additionally
need to maintain the cooccurrence matrix C ∈ N|I|×|I| and
the vector n ∈ N|I|. An update requires |Hu|2 adjustments
of the cooccurrence matrix, and (in the worst case) the re-
computation of |Hu| · |I| entries in the similarity matrix S,
which means that an update has a quadratic complexity of
O(|I|2) in the worst case. The vast majority of users will
however have only interacted with a very small number of
items in real world data. Additionally, both the memory
required for the intermediate data structures as well as the
update complexity can be reduced by only retaining the top-
k entries per item in S and by introducing bounds on the
maximum number of interactions to consider per user and
item, an approach which we discussed and evaluated in de-
tail in previous work [26].

Algorithm 1 Decremental / incremental update procedures
for an item-based recommendation model.
Input: item cooccurrence matrix C, item interaction counts n,

item similarity matrix S, user history Hu

1: function partial-fit(Hu, C, n, S)
2: n← n + Hu

3: for item pair (i1, i2) ∈ Hu do
4: Ci1i2 ← Ci1i2 + 1

5: for item i1 ∈ Hu do
6: for item i2 ∈ Ci1 do
7: Si1i2 ← Ci1i2/(ni1 + ni2 − Ci1i2)

8: function forget(Hu, C, n, S)
9: n← n−Hu

10: for item pair (i1, i2) ∈ Hu do
11: Ci1i2 ← Ci1i2 − 1

12: for item i1 ∈ Hu do
13: for item i2 ∈ Ci1 do
14: Si1i2 ← Ci1i2/(ni1 + ni2 − Ci1i2)

15: function predict(j, k, S)
16: return top-k items from Sj

Restoration of deleted data from a stale model. Next,
we discuss how deleted user data could be restored from a
stale model. We look at the case where the data of a single
user has been deleted from the database. That means that
the interactions data now consists of a matrix Ĥ which is
the original database H with the row corresponding to the
deleted user removed. If we still have access to the (now
stale) model S computed from H, we can restore the deleted

user data as follows. We compute the similarity matrix Ŝ
corresponding to the updated database Ĥ, and compare it
to the stale model S. We identify all items i for which we
observe differences in entries of the similarity matrices (e.g.,

∃j Sij 6= Ŝij). The set of these items i is exactly the items
that were contained in the interaction history of the deleted
user.

3.2.2 Ridge Regression (Regression)
Ridge regression [15] is a widely used technique to predict
a continuous target variable in regression scenarios. The in-
put data to the regression model is a matrix X ∈ Rm×d of
m d-dimensional observations, and a corresponding numeric
target variable y ∈ Rm. Without loss of generality, we as-
sume that the data of a particular user i is captured in the
i-th row vector Xi of the input (if more than one row would
denote data about a particular user, we could simply run
the decremental update procedure several times).

Model & Prediction. A common way to compute a ridge
regression model in the form of the weight vector w is to
solve the normal equation w = (X>X+λI)−1X>y. The reg-
ularization constant λ is typically selected via cross-validation.
The regression estimate for a new observation xnew can be
computed via its dot product with the weight vector: ŷnew =
w>xnew (as shown in the PREDICT function in Algorithm 2).

Decremental and incremental updates. We detail how
to remove the data of a user u (in the form of the u-th row
Xu of the observation matrix X) from a ridge regression
model. We aim for an efficient way to compute:

w = (X>X−X>uXu + λI)−1(X>y −Xuyu)

We therefore maintain the following intermediates from the
computation: the vector z = X>y and a QR factorization2

QR = qr(X>X + λI) of the regularized gram matrix. We
can now recompute z by subtracting Xuyu, and we invoke a
fast rank-one update algorithm [30] with − QTXu and Xu

as argument to update the QR decomposition Q, R. Af-
terwards, we can efficiently solve for the updated model w
(see the FORGET function in Algorithm 2). If we substitute
the subtractions with additions, this gives us an incremen-
tal update algorithm as well, as illustrated by the PARTIAL-

FIT function of Algorithm 2.

Space and complexity. The decremental variant of the
model requires us to maintain two additional matrices Q ∈
Rd×d and R ∈ Rd×d as well as the vector z ∈ Rd. This
means that the required space is quadratic in the number of
features d (which is typically much smaller than the number
of examples m), but independent of the number of examples.
An update requires 2d operations to scale and add to z,
d2 operations for the matrix vector multiplication QTXu ,
26d2 operations for the rank-one QR update [30], another
d2 operations for the matrix vector multiplication QT z and
again d2 operations for solving for w via back substitution.
In summary, an update has a complexity of O(d2), which
is an improvement over retraining which requires O(md2)
operations.

Restoration of deleted data from a stale model. In
contrast to the other approaches presented here, it is more
challenging to infer information about a deleted user feature
vector Xd from a regression model w. If we still had access
to the complete target variable y, we could constrain candi-
date vectors to the subspace defined by w>Xd = yd (with
some uncertainty due to the contained prediction error). Ad-
ditional knowledge about X (e.g., about the ranges of certain
features or about row-wise normalisation techniques), would
further restrict the space of candidate vectors.

2
The QR-factorisation is a decomposition of a matrix A into a prod-

uct A = QR of an orthogonal matrix Q and an upper triangular
matrix R, which is particularly useful to solve linear least squares
problems [30].

Algorithm 2 Decremental / incremental update procedures
for a ridge regression model.

Input: z← X>y, QR← qr(X>X + λI), user observation Xu

1: function partial-fit(Xu, yu, Q, R, z)
2: z← z + Xuyu
3: QR← qr update(Q,R,Q>Xu,Xu)
4: solve Rw = Q>z for w

5: function forget(Xu, yu, Q, R, z)
6: z← z−Xuyu
7: QR← qr update(Q,R,−Q>Xu,Xu)
8: solve Rw = Q>z for w

9: function predict(xnew,w)
10: return w>xnew

3.2.3 k-Nearest Neighbors with Locality Sensitive
Hashing (Classification)

Our next example leverages a nearest neighbor-based classi-
fication algorithm, which assigns the label of the k nearest
neighbors to an unknown observation. It applies a common
approximation technique to speed up the search for the near-
est neighbors called locality sensitive hashing (LSH) [13].
The input data for the classifier comprises of a matrix X ∈
Rm×d of m d-dimensional observations, and the target vari-
able y ∈ {1, . . . , c}m which denotes the assignments of the
corresponding c categorical labels. We again assume that
each row Xi corresponds to observations for a particular
user i.

Model & Prediction. The algorithm leverages approxi-
mate similarity search in a high-dimensional space by build-
ing an index over the data. This index comprises of several
hash tables where observations which are close in terms of
Euclidean distance have a high chance of ending up in the
same hash bucket. We leverage random projections as hash
function to compute the bucket indexes. We compute H
hash tables T1, . . . , TH with b-dimensional bucket indexes.
We generate a Gaussian random matrix Ωh for each hash
table Th, and leverage this matrix to conduct a random pro-
jection of our data via sgn(XΩh). The resulting bit vec-
tors denote the hash keys, and we assign each row Xi from
X to its corresponding bucket with key sgn(XiΩh) in the
hash table Th. In order to assign a label to an unseen
observation Xnew, we collect its nearest neighbors as fol-
lows. For each hash table Th, we compute the bucket index
bh = sgn(XnewΩh), and collect all observations from this
bucket. Next, we compute the k exact nearest neighbors of
Xnew in the retrieved observations, and assign the majority
label from these as the predicted label ŷnew to Xnew. This
can be efficiently implemented by maintaining a binary heap
with the k closest examples, as shown in the PREDICT func-
tion of Algorithm 3.

Decremental and incremental updates. Removing an
existing observation Xu for a user u from our index works as
depicted in the FORGET function of Algorithm 3. We com-
pute the bucket index buh of Xu via the random projection
sgn(XuΩh), and remove Xu from bucket buh in hash table
Th. We repeat this procedure for all hash tables. An incre-
mental update works analogously, as listed in the PARTIAL-

FIT function in Algorithm 3.

Space and complexity. Our approach requires no addi-
tional space, as it simply leverages the hash tables T1, . . . , Th
and the projection matrices Ω1, . . . ,Ωh, which are required
for deriving predictions from the model anyways. A decre-
mental update requires H matrix-vector multiplications be-
tween a projection matrix of size d×b and the feature vector
of dimensionality d for determining the bucket indices, plus
H subsequent hashmap inserts, leading to a complexity of
O(Hdb).

Algorithm 3 Decremental / incremental update procedures
for approximate k-NN.

Input: hash tables T1, . . . , Th, projection matrices Ω1, . . . ,Ωh,
observation Xu

1: function partial-fit(Xu, Ω, T)
2: for h = 1 . . . H do
3: buh = sgn(XuΩh)
4: add Xu to bucket buh in hash table Th

5: function forget(Xu, Ω, T)
6: for h = 1 . . . H do
7: buh = sgn(XuΩh)
8: remove Xu from bucket buh in hash table Th

9: function predict(xnew, Ω, T)
10: P ← heap with capacity k for closest examples
11: for h = 1 . . . H do
12: buh = sgn(XuΩh)
13: update P for all examples from bucket buh
14: return majority label from k examples in P

Restoration of deleted data from a stale model. The restora-
tion of deleted data from the model is trivial as the model
stores copies of the feature vectors.

3.2.4 Multinomial Naive Bayes (Classification)
The last algorithm we discuss is again a classification algo-
rithm called Naive Bayes [22], where we focus on a variant
for categorical data called Multinomial Naive Bayes (MNB).
The input data for the classifier comprises of a matrix X ∈
Nm×d of m d-dimensional observations, and the target vari-
able y ∈ {1, . . . , c}m which denotes the assignments of the
corresponding c categorical labels. We again assume that
each row Xi corresponds to observations for a particular
user i.

Model & Prediction. The Naive Bayes model is built on
the assumption that features are conditionally independent,
given the class label. If we use a uniform prior estimate
for the sake of simplicity, then the MNB classifier assigns
its class prediction ŷ as follows: ŷ = argmaxy

∑
j logXijθyj ,

where the probability P (xj = k|y) = θyi of encountering the
value k for feature j in class y is estimated using a smoothed

version of the maximum likelihood estimate θ̂yj =
Nyj+αj

Ny+α
.

Here, Nyj denotes the number of times the value for feature
j occurs in class y, Ny =

∑
j Nyj , a uniform prior is used for

the sake of simplicity, αj is the smoothing term per feature,
and α the sum of the smoothing terms.

Decremental and incremental updates. Adding or re-
moving a user feature vector Xu with a given class label y
for MNB is trivial, as we just need to increment or decre-
ment the corresponding feature counts Nyj and Ny for all
non-zero features with indexes j ∈ Xu. Note that this ap-
proach also works for the Gaussian variant of Naive Bayes

for continuous data, where we have to maintain the mean
and variance per feature and class label instead of the raw
counts.

Space and complexity. Our incremental/decremental vari-
ant requires us to maintain the raw feature counts N with
space in O(dc) which requires the same space as the proba-
bility vectors θ. The number of operations for incremental
and decremental updates linear in the number of non-zero
features of the vector Xu to add or remove.

Algorithm 4 Decremental / incremental update procedures
for Multinomial Naive Bayes .

Input: conditional feature counts N

1: function partial-fit(Xu, cu, N)
2: for (i,Xuj) ∈ Xu do
3: Nyuj ← Nyuj +Xuj
4: Nyu ← Nyu +Xuj

5: function forget(Xu, Ω, T)
6: for (i,Xuj) ∈ Xu do
7: Nyuj ← Nyuj −Xuj
8: Nyu ← Nyu −Xuj

9: function predict(xnew, N)

10: return argmaxy
∑

(j,xj)∈xnew
log xj

Nyj+αj

Ny+α

Restoration of deleted data from a stale model. We
again discuss how deleted user data could be restored from
a stale model, and focus on the simplified case where the
data of a single user has been deleted from the database. In

this case, we can recompute all paramater estimates θ̂
(new)
yj

and detect the features contained in the deleted data by

identifying all differences θ̂
(new)
yj 6= θ̂yj in the new and old

parameter estimates.

4. IMPLEMENTATION
We provide single-threaded and parallel implementations of
our proposed algorithms in Rust.3

Single-Threaded. We depend on the fnv crate for fast
hashmaps, the ndarray crate with bindings to OpenBLAS
for the random projections in approximate k-NN, as well
as on the GSL crate bindings to the GNU Scientific Library
which provides the routines for updating the QR factoriza-
tions required for ridge regression. Note that we implement
mini-batch versions of the PARTIAL-FIT function for efficient
retraining and apply a ‘user interaction cut’ [26] of 500 in-
teractions to our recommender implementation.

Differential Dataflow. We additionally implement dataflow
versions of our algorithms in Differential Dataflow [20, 19]
(DD) to enable parallelisation and distribution, as well as to
benefit from its automatic incrementalisation and decremen-
talisation. We find that three out of four of the algorithms
fit well into the dataflow model.
A simplified implementation of our incremental/decremen-
tal item-based recommender is shown in the following. The
most expensive operations is the matrix matrix multiplica-
tion C = H>H of the binary user interaction history matrix
H to obtain the cooccurrence matrix C. We implement this
with a self-join followed by a count aggregation. We would

3https://github.com/schelterlabs/projects-amnesia

https://github.com/schelterlabs/projects-amnesia

like to highlight that our actual implementation contains a
set of performance improvements not included in the listing,
e.g., the use of ‘arranges’ [18] to re-use intermediate results,
the application of an interaction-cut [26] to handle ‘power
users’, and thresholding of the similarity matrix.

// Maintain interactions per item n
let num_interactions_per_item = interactions
.map(|(_user, item)| item)
.count_total();

// Maintain the cooccurence matrix C
let cooccurrences = interactions
.join(&interactions,

|_user, &item_a, &item_b| (item_a, item_b))
.count();

// Maintain the similarity matrix S
let jaccard_similarities = cooccurrences
.map(|record|, key_by_item_a(record))
// Find the number of interactions for item a
.join(&num_interactions_per_item,

|record| collect_for_item_a(record))
.map(|record|, key_by_item_b(record))
// Find the number of interactions for item b
.join(&num_interactions_per_item,

|record| collect_for_item_b(record))
// Compute Jaccard similarty
.map(|record| compute_jaccard(record));

Listing 1: Implementation of the proposed item-
based recommender in DD (simplified).

For the k-nn classifier, we form the cartesian product be-
tween the projection matrices and features, and execute the
projections afterwards to obtain the bucket keys. The Naive
Bayes implementation only requires us to maintain grouped
counts by label and feature per label.

let features_per_label =
examples.explode(|example| {
let label = example.label;
example.features.into_iter()
.map(|(index, value)| ((index, label), value)));

let feature_per_label_counts =
features_per_label.count();

let label_counts = features_per_label
.map(|(_, label)| label)
.count();

Listing 2: Implementation of the proposed
multinomial naive bayes classifier in DD (simplified).

5. RELATED WORK
Ensuring that data processing technology adheres to legal
and ethical standards in a fair and transparent manner [29]
is an important research direction, which starts to gain at-
tention from law makers and governments [10]. The machine
learning community has pioneered some work on removing
data from models under the umbrella of “decremental learn-
ing” for support vector machines [5, 16].
In contrast to our work, these approaches need to re-access
the training data for updating the model though, which in-
troduces operational complexity as model training (and the
corresponding data) and serving is typically handled in dif-
ferent systems and infrastructures [21]. Cao et al. [4] propose
an approach similar to ours to remove adversarial inputs

from ML models, however they again reaccess the training
data for model updates. For that reason, their approach
also works for iterative, gradient-descent based learning al-
gorithms, as they basically just restart gradient descent from
the iteration where the sample to forget was used first. They
adopt a popular summation form of ML algorithms (devel-
oped as a general model to parallelize training on multi-
core architectures), which for example does not capture our
QR factorization-based update methods for linear regression
well. Ginart et. al. [12] explore a problem setting similar to
ours for stochastic algorithms, in particular for variants of
k-Means clustering.
An orthogonal technique to protect the privacy of user data
in machine learning use cases is differential privacy [8]. How-
ever, it is very difficult to design differentially private algo-
rithms (even for experts [7]), and this approach requires a
difficult decision on the limit of the acceptable privacy loss
in practice.
The security community studies inference attacks against
ML models, e.g., to infer whether a given record was part
of the training data of a model [28] or to infer statistical
information about the training data [2].
The approach used in this paper bears resemblance to gen-
eral approaches for incremental data processing [9, 19, 27,
14] with the difference that it requires inverse operations
for removing data, which are not covered by many existing
approaches.

6. EVALUATION
Datasets. We run experiments4 on nine real-world datasets,
more precisely on three differently sized datasets for each
proposed algorithm, which are detailed in Table 1. For our
recommendation algorithm, we leverage joke ratings (jester),
movie ratings (movielens), and DVD ratings (ciaodvd), which
are publicly available via the Konect network repository.5

We use data about mushrooms, phishing websites, and car-
tographic forest data (covtype) for our classification exper-
iments. Finally, we train our regression models on data
about house prices (housing, cadata) and music (YearPre-
dictionMSD). The classification and regression datasets are
available via the LibSVM dataset repository.6

6.1 Benefits of Decremental Updates
Setup. We experiment using our single-threaded implemen-
tations in Rust 1.38 on a machine with an Intel i7-7700HQ
CPU and 16GB of RAM, running Ubuntu Linux 16.04. We
load the input data into memory and train a model on each
dataset. Next, we measure the time to update the model to
“forget” a random user versus the time to retrain the model
from scratch without the data of that particular user. We
repeat every experiment for twenty randomly chosen users
and report the median runtime as well as the 90th and 10th
percentile of the runtime distribution in Figure 2. Note that
the runtime on the y-axis is displayed on a logarithmic scale,
and that the runtimes for retraining are overly optimistic as
we do not include the time to parse and read the training
data into the measurements (which would depend on the
infrastructure).

4Code to reproduce our experiments is available at https:
//github.com/schelterlabs/projects-amnesia.
5http://konect.cc/networks/
6https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

https://github.com/schelterlabs/projects-amnesia
https://github.com/schelterlabs/projects-amnesia
http://konect.cc/networks/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

jester movielens ciaodvd
10 1

100

101

102

103

104

ru
nt

im
e

(m
s)

forget
retrain

(a) Collaborative Filtering.

housing cadata YPMSD
100

101

102

103

104

105

ru
nt

im
e

(
s)

forget
retrain

(b) Ridge Regression.

mushrooms phishing covtype

102

103

104

105

106

107

ru
nt

im
e

(
s)

forget
retrain

(c) k-Nearest Neighbors.

mushrooms phishing covtype

100

101

102

103

104

ru
nt

im
e

(
s)

forget
retrain

(d) Multinomial Naive Bayes.

Figure 2: Comparison of the median runtimes for removing a random user’s data from a trained ML model.
“Retrain” retrains a model from scratch without this user’s data, while “forget” decrementally updates the
trained model to forget the user data. The runtime is displayed on a logarithmic scale and the error bars
denote the 90-th and 10-th percentiles of the observed runtime distribution.

dataset #examples #features
mushrooms 8,124 112
phishing 11,055 68
covtype 581,012 54
housing 506 13
cadata 20,640 8
YearPredictionMSD 463,715 90

dataset #interactions #users #items
jester 1,728,847 50,692 140
movielens 1,000,209 6,040 3,706
ciaodvd 1,625,480 21,019 71,633

Table 1: Datasets for evaluation.

Results. The results for our recommendation algorithm ap-
plied to the jester, movielens, and ciaodvd data are shown
in Figure 2(a). The decremental update is three to five
orders of magnitude faster than retraining for the jester
and ciaodvd data, and two orders of magnitude faster for
the movielens dataset, where the update time varies much
stronger. This difference is due to the dependence of the
update time on the user history length which is very low
for the jester and ciaodvd data with 20 and 34 interactions
on average, and much higher for the movielens data with a
mean of 143 interactions.
The results for our ridge regression experiments on the hous-
ing, cadata and YearPredictionMSD datasets are illustrated
in Figure 2(b). We observe that the update is one to two or-
ders of magnitude faster than retraining for the small hous-
ing and cadata datasets, and more than three orders of mag-
nitude faster for the YearPredictionMSD data, which has
more than 500K observations. This illustrates the fact that
the update runtime depends on the number of features only
and is independent of the number of examples (as outlined
Section 3.2). Therefore, we observe a larger runtime differ-
ence for datasets with more examples.
We show the results for the approximate k-NN model on the
mushrooms, phishing and covtype datasets in Figure 2(c).
We used 20 hash tables, set k to 10, and apply random
projections as hashing function to approximate euclidean
distance. The decremental update is more than three orders
of magnitude faster in all cases, which is an expected result
as the update just involves a fixed number of hash table
modifications.

We show the results for the Multinomial Naive Bayes model
on the mushrooms, phishing and covtype datasets in Fig-
ure 2(d). We binarized the input features. The decremental
update is more than three orders of magnitude faster in all
cases, and can often be conducted in less than a microsec-
ond, which is an expected result as the update just involves
a fixed number of updates to a dense array.
In short, the experimental results confirm that our algo-
rithms satisfy the requirement for the decremental update
procedures: the update is several orders of magnitude faster
than retraining in the majority of cases, and can be con-
ducted in sub-second time for the datasets from our evalua-
tion.

6.2 Benefits of Parallelisation
Next, we evaluate the scalability our implementation in Dif-
ferential Dataflow. We focus on the item-based recommender,
as we found the other approaches to have update times of
less than a millisecond in our previous experiments (which
obliviates the need for parallelisation). We train a recom-
mender model for the jester, movielens, and ciaodvd datasets,
and measure the time to remove 100 randomly chosen user
histories. We repeat each experiment 20 times for an in-
creasing number of workers (threads), and plot the resulting
runtimes in Figure 3. Note that we fix the random seeds for
comparability as the runtime is extremely sensitive to the
length of the (randomly) chosen user histories.

1 2 3 4
workers

0

1000

2000

ru
nt

im
e

(m
s)

movielens
jester
ciaodvd

Figure 3: Scalability of our item-based recom-
mender implementation in differential dataflow for
a decremental update of 100 random users.

We observe that the parallelisation effectively reduces the
runtime for the movielens, and ciaodvd. The updates for the
jester dataset can be conducted in less than 25 milliseconds
in all setups, due to the extremely low number of items in
the dataset.

7. DISCUSSION
We discuss operational implications of our approach, and
describe limitations in its generality as basis for further re-
search.

7.1 Operational Implications
A major operational implication of our proposed approach
is that our tforget procedure does not require access to the
original training data D, which simplifies the integration
of our approach into complex real-world ML deployments.
In such deployments, model training typically requires an
offline training process on a cluster or a powerful machine
in separate infrastructure with access to the training data
(which typically must not be accessible from serving systems
for security reasons). After the completion of the training,
the updated model has to be re-deployed to a model serv-
ing system [21, 1] via complex deployment pipelines. As
our approach does not require access to the training data,
we enable a setup with much lower operational complexity
because the model can be updated in-place in the serving
systems.
This operational perspective and the goal to avoid having to
reaccess training data is a novel and differentiating factor of
our approach in constrast to existing work which falls back
to reaccessing training data and retraining models in most
cases [5, 16, 4].

7.2 Generality of our Approach
Our approach is based on the idea of recomputing the parts
of the model that have been affected by the user data which
we aim to remove. This is efficient if (i) only a small part of
the model is affected, and (ii) the recomputation is asymp-
totically cheaper than full retraining. These conditions are
the basis for the experimental results we observed in the pre-
vious section. A general property that a model must have
for our approach to work are so-called sparse computational
dependencies [9, 27]. A formal way to reason about these
is via a bipartite dependency graph G(Vi, Vm, E) [3] where
the vertex set Vi denotes partitions of our input data, the
vertex set Vm denotes partitions of the final model, and an
edge (vi, vm) ∈ E between a vertex vi and a vertex vm de-
notes that the input i is necessary to compute the m-th part
of the model. This graph allows us to determine which parts
of the model need to be recomputed if we remove a partic-
ular input vu. If the graph is sparse (e.g., the vertices in Vi
have a low degree), only a small part of the model must be
recomputed. If the graph was fully connected, the removal
of a single input would trigger a complete retraining of the
model.

0 1 1 0 0 0

interactions H
similarities S

us
e r

s

ite
m

s

items
items

Figure 4: Illustration of the sparse computational
dependencies in item-based collaborative filtering.
Each (sparse) row of the input H affects only a frac-
tion of the model S, indicated by the non-zero en-
tries in the row.

The algorithms discussed in this paper exhibit such sparse
computational dependencies: For approximate k-NN, the
vertex set Vi comprises of the user observations (e.g., the
rows of the input matrix X, and the vertex set Vm consists
of the buckets of the hash tables T1, ..., TH . The resulting
dependency graph is sparse, because we hash each input Xu

to H buckets only, which means the degree of each v ∈ Vi
is exactly H, and upon removal of an input, only H buckets
must be updated.
The dependency graph between the inputs (the user histo-
ries Hu) and the cooccurrences (entries of the cooccurrence
matrix C for item-based collaborative filtering is sparse as
well, as shown in Figure 4. Each similarity Sij depends on all
user histories where the item pair (i, j) occurs. That means
that a single user history contributes to a quadratic number
of cooccurrences (all possible item pairs). As a result, the
resulting dependency graph is sparse as well, because the
majority of users only interact with a very small subset of
the overall items.
The dependency graph model also explains why our ap-
proach is not applicable to models learnt with gradient de-
scent, as this learning algorithm exhibits dense computa-
tional dependencies. In general, we learn a supervised model
w on labeled examples {(x1, y1), . . . , (xn, yn)} as follows us-
ing gradient descent:

w(t+1) = w(t) − λ
∑
x,y

∇w(t)`(x, y,w
(t))

We obtain w(t+1) by updating w(t) (according to the learn-
ing rate λ) in the negative direction of the gradient of the
model’s loss function, which we compute as the sum of the
gradients over the losses ` of the individual examples (x, y).

That means that each intermediate model w(t) is dependent
on all inputs with a non-zero gradient and recursively de-
pends on all previous model versions w(t−1), . . . ,w(0), giving
rise to a dense computational dependency graph, as sketched
in Figure 5.

X y
w(0)

w(1)

w(2)
...us

e r
s

features & label

Figure 5: Illustration of the dense computational
dependencies in stochastic gradient descent-based
learning. Each model iterate w(t) depends on the
whole input and the previous iterate w(t−1).

This illustrates that our approach works best in case of non-
iterative learning procedures with sparse computational de-
pendencies. While such methods are conceptually simpler
than currently popular approaches (e.g., deep neural net-
works), they are nevertheless widely used in industry (e.g.,
in the Amazon SageMaker platform7, which offers k-nearest
neighbors, linear models, and k-Means). Furthermore, it
has recently been shown [6] that classical itembased collab-
orative filtering outperforms recurrent neural networks for a
wide variety of recommendation datasets.

7https://docs.aws.amazon.com/sagemaker/latest/dg/algos.
html

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

7.3 Future Directions
The next directions for this line of research are two-fold: we
will explore decremental updates for more ML algorithms,
and extend the decremental updates to the whole ML pipeline
(e.g., provide decremental/incremental data preprocessing
and feature encoding operations). We additionally intend
to explore changes to the training procedures of gradient-
descent-based models to also enable decremental updates
for them.
We would furthermore like to stress that challenges with
respect to reliably deleting user data are not constrained
to ML models and pipelines; they extend to entire data
management lifecycle, which often includes data replication
when run in cloud environments.

Acknowledgements. We would like to thank Frank Mc-
Sherry and Ted Dunning for helpful comments on improving
implementations and algorithms in this paper.

8. REFERENCES
[1] P. Andrews, A. Kalro, H. Mehanna, and A. Sidorov.

Productionizing machine learning pipelines at scale. ML
Systems workshop at ICML, 2016.

[2] G. Ateniese, G. Felici, L. V. Mancini, A. Spognardi,
A. Villani, and D. Vitali. Hacking smart machines with
smarter ones: How to extract meaningful data from
machine learning classifiers. arXiv preprint
arXiv:1306.4447, 2013.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed
computation: numerical methods, volume 23. Prentice hall
Englewood Cliffs, NJ, 1989.

[4] Y. Cao and J. Yang. Towards making systems forget with
machine unlearning. IEEE Symposium on Security and
Privacy, pages 463–480, 2015.

[5] G. Cauwenberghs and T. Poggio. Incremental and
decremental support vector machine learning. NeurIPS,
pages 409–415, 2001.

[6] M. F. Dacrema, P. Cremonesi, and D. Jannach. Are we
really making much progress? a worrying analysis of recent
neural recommendation approaches. RecSys, pages 101–109,
2019.

[7] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer.
Detecting violations of differential privacy. CCS, pages
475–489, 2018.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
Theory of Cryptography, pages 265–284, 2006.

[9] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. PVLDB,
5(11):1268–1279, 2012.

[10] Executive Office of the President. White House Report on
Big Data: Seizing Opportunities, Preserving Values, 2014.

[11] GDPR.eu. Recital 65: Right of rectification and erasure.
https://gdpr.eu/recital-65-right-of-rectification-and-erasure

[12] A. Ginart, M. Y. Guan, G. Valiant, and J. Zou. Making AI
forget you: Data deletion in machine learning. CoRR,
abs/1907.05012, 2019.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. VLDB, pages 518–529, 1999.

[14] A. Gupta, I. S. Mumick, et al. Maintenance of materialized
views: Problems, techniques, and applications. IEEE Data
Eng. Bull., 18(2):3–18, 1995.

[15] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970.

[16] M. Karasuyama and I. Takeuchi. Multiple incremental
decremental learning of support vector machines. NeurIPS,
pages 907–915, 2009.

[17] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,

L. R. Gordon, and J. Riedl. Grouplens: applying
collaborative filtering to usenet news. Communications of
the ACM, 40(3):77–87, 1997.

[18] F. McSherry, A. Lattuada, and M. Schwarzkopf. K-pg:
Shared state in differential dataflows, 2018.

[19] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. CIDR, 2013.

[20] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: a timely dataflow
system. SOSP, pages 439–455, 2013.

[21] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.
Tensorflow-serving: Flexible, high-performance ml serving.
ML Systems workshop at NeurIPS, 2017.

[22] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger.
Tackling the poor assumptions of naive bayes text
classifiers. ICML, pages 616–623, 2003.

[23] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al.
Item-based collaborative filtering recommendation
algorithms. WWW, 1:285–295, 2001.

[24] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas,
S. Seufert, and G. Szarvas. On challenges in machine
learning model management. Data Engineering, 2018.

[25] S. Schelter, C. Boden, and V. Markl. Scalable
similarity-based neighborhood methods with mapreduce.
ACM RecSys, pages 163–170, 2012.

[26] S. Schelter, U. Celebi, and T. Dunning. Efficient
incremental cooccurrence analysis for item-based
collaborative filtering. SSDBM, 2019.

[27] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. All roads
lead to rome: optimistic recovery for distributed iterative
data processing. CIKM, pages 1919–1928, 2013.

[28] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
Membership inference attacks against machine learning
models. pages 3–18, 2017.

[29] J. Stoyanovich, S. Abiteboul, and G. Miklau. Data,
responsibly: Fairness, neutrality and transparency in data
analysis. EDBT, 2016.

[30] C. F. Van Loan and G. H. Golub. Matrix computations.
Johns Hopkins University Press, 1983.

https://gdpr.eu/recital-65-right-of-rectification-and-erasure

	Introduction
	Negative Privacy Implications
	Approach
	Problem Statement
	Decremental / Incremental Models
	Item-Based Collaborative Filtering(Recommender Systems)
	Ridge Regression (Regression)
	k-Nearest Neighbors with Locality SensitiveHashing (Classification)
	Multinomial Naive Bayes (Classification)

	Implementation
	Related Work
	Evaluation
	Benefits of Decremental Updates
	Benefits of Parallelisation

	Discussion
	Operational Implications
	Generality of our Approach
	Future Directions

	References

