
The VLDB Journal
DOI 10.1007/s00778-014-0357-y

REGULAR PAPER

The Stratosphere platform for big data analytics

Alexander Alexandrov · Rico Bergmann · Stephan Ewen · Johann-Christoph Freytag ·
Fabian Hueske · Arvid Heise · Odej Kao · Marcus Leich · Ulf Leser · Volker Markl ·
Felix Naumann · Mathias Peters · Astrid Rheinländer · Matthias J. Sax · Sebastian Schelter ·
Mareike Höger · Kostas Tzoumas · Daniel Warneke

Received: 10 July 2013 / Revised: 18 March 2014 / Accepted: 1 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present Stratosphere, an open-source soft-
ware stack for parallel data analysis. Stratosphere brings
together a unique set of features that allow the expressive,
easy, and efficient programming of analytical applications
at very large scale. Stratosphere’s features include “in situ”
data processing, a declarative query language, treatment of
user-defined functions as first-class citizens, automatic pro-

Stratosphere is funded by the German Research Foundation (DFG)
under grant FOR 1306.

A. Alexandrov · S. Ewen · F. Hueske · M. Höger · O. Kao ·
M. Leich · V. Markl · S. Schelter · K. Tzoumas (B)
Technische Universität Berlin, Berlin, Germany
e-mail: kostas.tzoumas@tu-berlin.de

A. Alexandrov
e-mail: alexander.alexandrov@tu-berlin.de

S. Ewen
e-mail: stephan.ewen@tu-berlin.de

F. Hueske
e-mail: fabian.hueske@tu-berlin.de

M. Höger
e-mail: mareike.hoger@tu-berlin.de

O. Kao
e-mail: odej.kao@tu-berlin.de

M. Leich
e-mail: marcus.leich@tu-berlin.de

V. Markl
e-mail: volker.markl@tu-berlin.de

S. Schelter
e-mail: sebastian.schelter@tu-berlin.de

R. Bergmann · J.-C. Freytag · U. Leser · M. Peters ·
A. Rheinländer · M. J. Sax
Humboldt-Universität zu Berlin, Berlin, Germany
e-mail: bergmann@informatik.hu-berlin.de

gram parallelization and optimization, support for iterative
programs, and a scalable and efficient execution engine.
Stratosphere covers a variety of “Big Data” use cases, such
as data warehousing, information extraction and integration,
data cleansing, graph analysis, and statistical analysis appli-
cations. In this paper, we present the overall system architec-
ture design decisions, introduce Stratosphere through exam-
ple queries, and then dive into the internal workings of the
system’s components that relate to extensibility, program-
ming model, optimization, and query execution. We experi-
mentally compare Stratosphere against popular open-source
alternatives, and we conclude with a research outlook for the
next years.

J.-C. Freytag
e-mail: freytag@informatik.hu-berlin.de

U. Leser
e-mail: leser@informatik.hu-berlin.de

M. Peters
e-mail: mathias.peters@informatik.hu-berlin.de

A. Rheinländer
e-mail: rheinlae@informatik.hu-berlin.de

M. J. Sax
e-mail: mjsax@informatik.hu-berlin.de

A. Heise · F. Naumann
Hasso Plattner Institute, Potsdam, Germany
e-mail: arvid.heise@hpi.uni-potsdam.de

F. Naumann
e-mail: felix.naumann@hpi.uni-potsdam.de

D. Warneke
International Computer Science Institute, Berkeley, CA, USA
e-mail: warneke@icsi.berkeley.edu

123



A. Alexandrov et al.

Keywords Big data · Parallel databases · Query process-
ing · Query Optimization · Data cleansing · Text mining ·
Graph processing · Distributed systems

1 Introduction

We are in the midst of a “Big Data” revolution. The plunging
cost of hardware and software for storing data, accelerated by
cloud computing, has enabled the collection and storage of
huge amounts of data. The analysis and exploration of these
data sets enable data-driven analysis that has the potential
to augment or even replace ad-hoc business decisions. For
example, web companies track user behavior to optimize
their business. Large scientific experiments and simulations
collect huge amounts of data, and scientists analyze these to
form or validate hypotheses.

Commercial RDBMS products cannot cope with the scale
and heterogeneity of the collected data sets, and their pro-
gramming and data model is not a good fit to the new analy-
sis workflows. These reasons have led to a reconsideration of
methods for managing data at scale, leading to new software
artifacts developed by academia and industry. The “Big Data”
software ecosystem includes distributed file systems [29],
parallel data analysis platforms [8,12,15,22,44,70,74], data
programming languages [13,19,37,57,69], and more spe-
cialized tools for specific data domains [53,54].

We present Stratosphere, a data analytics stack that
enables the extraction, analysis, and integration of hetero-
geneous data sets, ranging from strictly structured relational
data to unstructured text data and semi-structured data. The
Stratosphere system can perform information extraction and
integration, traditional data warehousing analysis, model
training, and graph analysis using a single query processor,
compiler, and optimizer.

Stratosphere brings together a unique set of features that
we believe are an essential mix for supporting diverse ana-
lytical applications on “Big Data.”

First, we believe data analysts are more productive when
using declarative, high-level languages rather than low-level
languages. Stratosphere includes such a query language. In
addition, the system can serve as a suitable compilation plat-
form for several other languages for different domains. By
offering an extensible intermediate layer, and by exposing
several layers of the system stack as programming mod-
els with an underlying optimizer, query languages can be
compiled to Stratosphere with less effort (e. g., often without
implementing an own optimizer for the specific language),
and this compilation can lead to better performance.

Second, Stratosphere enables “in situ” data analysis by
connecting to external data sources, such as distributed file
systems that often act as the “landing points” of heteroge-
neous data sources from various organizations. That way, an

expensive data loading process is not needed; Stratosphere
does not store data, but only converts it to optimized binary
formats after the initial scans.

Third, Stratosphere uses a richer set of primitives than
MapReduce, including primitives that allow the easy spec-
ification, automatic optimization, and efficient execution of
joins. This makes the system a more attractive compilation
platform for data warehousing languages and applications.

Fourth, Stratosphere treats user-defined functions (UDFs)
as first-class citizens throughout the system’s stack, includ-
ing the system’s optimizer. This widens the applicability and
extensibility of the system to problem domains beyond tradi-
tional data warehousing queries, such as information extrac-
tion from textual data and information integration.

Fifth, Stratosphere includes a query optimizer that auto-
matically parallelizes and optimizes data analysis programs.
The programmer does not need to worry about writing par-
allel code or hand-picking a join order.

Sixth, Stratosphere includes support for iterative pro-
grams, programs that make repeated passes over a data set
updating a model until they converge to a solution. This
enables the specification, optimization, and execution of
graph analytics and statistical applications inside the data
processing engine. Such applications are integrated with data
pre- and postprocessing within a single analytical pipeline,
cross-optimized, and executed by the same system.

Finally, Stratosphere uses an execution engine that includes
external memory query processing algorithms and natively
supports arbitrarily long programs shaped as directed acyclic
graphs. Stratosphere offers both pipeline (inter-operator) and
data (intra-operator) parallelism.

Stratosphere is a layered system that offers several pro-
gramming abstractions to a user. We discuss them in top-
down order, higher-level abstractions being more declarative
and amenable to automatic optimization. The Meteor query
language [37] offers a declarative abstraction for processing
semi-structured data. The PACT programming model [8] is
analogous to, and in fact a generalization of, the MapRe-
duce model; PACTs offer a moderately low-level program-
ming abstraction consisting of a fixed set of parallelization
primitives and schema-less data interpreted by user-defined
functions written in Java. This level of abstraction is espe-
cially useful for implementing complex operators that do not
“fit” in a query language. Finally, the Nephele programming
abstraction [67] allows a power user to specify custom par-
allelization schemes.

Over the last years, our research in Stratosphere has
advanced the state of the art in data management in sev-
eral aspects. We proposed a data programming model based
on second-order functions to abstract parallelization [3,8], a
method that uses static code analysis of user-defined func-
tions to achieve goals similar to database query optimization
in a UDF-heavy environment [41–43], abstractions to inte-

123



Stratosphere platform for big data analytics

grate iterative processing in a dataflow system with good per-
formance [25,26], an extensible query language and under-
lying operator model [37], techniques to infer cloud topolo-
gies and detect bottlenecks in distributed execution [9–11],
as well as techniques to exploit dynamic resource alloca-
tion [68] and evaluate compression schemes [40]. We have,
finally, evaluated Stratosphere on a variety of analytical use
cases [14,51].

The contribution of this paper lies less in the individual
research findings and more in placing these findings into a
larger perspective. We, for the first time, present the architec-
ture of the Stratosphere system as a whole and the interplay
between various components that have appeared in individ-
ual publications. We discuss in detail the query optimiza-
tion process in Stratosphere. In addition, we conduct an
extensive experimental study against the open-source state
of the art. Finally, we discuss lessons learned from build-
ing the system and offer our research outlook for the next
years. Stratosphere is an open-source project available at
www.Stratosphere.eu under the Apache license.

The rest of this paper describes the architecture, interfaces,
applications, and internal workings of the system at its current
stage, as well as highlights several research innovations that
advance the state of the art in massively parallel data process-
ing. Section 2 presents an overview of the Stratosphere sys-
tem. Section 3 discusses Meteor, the Stratosphere query lan-
guage, from an end-user perspective, exemplified via two use
cases. Section 4 presents the underlying extensible Sopremo
operator model. Section 5 presents the PACT programming
model, the model of parallelization used in Stratosphere.
Section 6 presents the optimization phases and techniques
employed in Stratosphere. Section 7 discusses how programs
are actually executed in Stratosphere by the Nephele distrib-
uted dataflow engine and Stratosphere’s runtime operators.
Section 8 experimentally compares Stratosphere with other
open-source systems. Section 9 discusses ongoing work by
the Stratosphere group. Finally, Sect. 10 discusses related
work, and Sect. 11 concludes and offers a research outlook.

2 System architecture

The Stratosphere software stack consists of three layers,
termed the Sopremo, PACT, and Nephele layers. Each layer
is defined by its own programming model (the API that is
used to program directly the layer or used by upper layers
to interact with it) and a set of components that have cer-
tain responsibilities in the query processing pipeline. This
section presents the overall Stratosphere architecture, briefly
sketches the purpose and responsibilities of each layer, and
highlights their interactions. In addition, the section estab-
lishes the terminology that is used in the rest of this paper.

The main motivation behind separating the Stratosphere
system in three layers with different programming models
is to provide users with a choice regarding the declarativity
of their programs and to have different compilation targets
when the “users” are language compilers. While the pro-
gramming model of the highest layer, Sopremo, exhibits the
highest degree of declarativity and is amenable to similar
optimizations as in relational databases, the subjacent PACT
and Nephele layers gradually trade declarativity for expres-
siveness. Through a series of compilation steps, Stratosphere
can translate the higher-layer programs into lower-layer pro-
grams, thereby exploiting the richer semantics of the higher-
level programming models for automatic optimizations in
each compilation step.

Figure 1 sketches Stratosphere’s architecture and illus-
trates the functionality each of the three layers provides. In
the remainder of this section, we introduce each layer of the
Stratosphere stack in top-down order.

Sopremo is the topmost layer of the Stratosphere stack. A
Sopremo program consists of a set of logical operators con-
nected in a directed acyclic graph (DAG), akin to a logical
query plan in relational DBMSs. Programs for the Sopremo
layer can be written in Meteor, an operator-oriented query
language that uses a JSON-like data model to support the
analysis of unstructured and semi-structured data. Meteor
shares similar objectives as higher-level languages of other
big data stacks, such as Pig [57] or Jaql [13] in the Hadoop
ecosystem, but is highlighted by extensibility and the seman-
tically rich operator model Sopremo, which also lends its
name to the layer. Through Sopremo, domain specialists can
easily integrate application-specific functions by extending
Sopremo’s set of operators, enabling automatic optimization
at compile time for different domains.

Once a Meteor script has been submitted to Stratosphere,
the Sopremo layer first translates the script into an opera-
tor plan. Moreover, the compiler within the Sopremo layer
can derive several properties of the plan, which can later be
exploited for the physical optimization of the program in the
subjacent PACT layer. The Meteor language is presented by
means of examples in Sect. 3. Details about the Sopremo
layer and the optimization process are described in Sects. 4
and 6.

The output of the Sopremo layer and, at the same time,
input to the PACT layer of the Stratosphere system is a
PACT program. PACT programs1 are based on the PACT pro-
gramming model, an extension to the MapReduce program-
ming model. Similar to MapReduce, the PACT programming
model builds upon the idea of second-order functions, called
PACTs. Each PACT provides a certain set of guarantees on
what subsets of the input data will be processed together, and
the first-order function is invoked at runtime for each of these

1 PACT is a portmanteau for “parallelization contract.”

123



A. Alexandrov et al.

Fig. 1 The Stratosphere software stack. Functionality is distributed into three layers characterized by their distinct APIs (programming models).
Stratosphere connects to popular open-source software for resource manager and data storage

subsets. That way, the first-order functions can be written (or
generated from a Sopremo operator plan) independently of
the concrete degree of parallelism or strategies for data ship-
ping and reorganization. Apart from the Map and Reduce
contracts, the PACT programming model also features addi-
tional contracts to support the efficient implementation of
binary operators. Moreover, PACTs can be assembled to form
arbitrarily complex DAGs, not just fixed pipelines of jobs as
in MapReduce.

The first-order (user-defined) functions in PACT programs
can be written in Java by the user, and their semantics are
hidden from the system. This is more expressive than writ-
ing programs in the Sopremo programming model, as the
language is not restricted to a specific set of operators. How-
ever, PACT programs still exhibit a certain level of declar-
ativity as they do not define how the specific guarantees of
the used second-order functions will be enforced at runtime.
In particular, PACT programs do not contain information on
data repartitioning, data shipping, or grouping. In fact, for
several PACT input contracts, there exist different strategies
to fulfill the provided guarantees with different implications

on the required effort for data reorganization. Choosing the
cheapest of those data reorganization strategies is the respon-
sibility of a special cost-based optimizer, contained in the
PACT layer. Similar to classic database optimizers, it com-
putes alternative execution plans and eventually chooses the
most preferable one. To this end, the optimizer can rely on
various information sources, such as samples of the input
data, code annotations (possibly generated by the Sopremo
layer), information from the cluster’s resource manager, or
runtime statistics from previous job executions. Details about
the optimizer’s cost model as well as the actual optimization
process are discussed in Sects. 5 and 6.

The introduction of a distinct layer that accepts arbitrarily
complex DAGs of second-order functions that wrap arbitrary
user code, and the ability to optimize such programs toward
different physical execution strategies is one central aspect
that differentiates the Stratosphere stack from other systems
(e. g., Asterix [12]). The PACT layer separates the paralleliza-
tion aspects from semantic aspects and provides a convenient
intermediate programming model that sits between operators
with known semantics and arbitrary parallel tasks.

123



Stratosphere platform for big data analytics

The output of the PACT compiler is a parallel data
flow program for Nephele, Stratosphere’s parallel execution
engine, and the third layer of the Stratosphere stack. Sim-
ilar to PACT programs, Nephele data flow programs, also
called Job Graphs, are also specified as DAGs with the ver-
tices representing the individual tasks and the edges mod-
eling the data flows between those. However, in contrast to
PACT programs, Nephele Job Graphs contain a concrete exe-
cution strategy, chosen specifically for the given data sources
and cluster environment. In particular, this execution strategy
includes a suggested degree of parallelism for each vertex of
the Job Graph, concrete instructions on data partitioning as
well as hints on the co-location of vertices at runtime.

In comparison with Meteor and the PACT programming
model, a Nephele Job Graph exhibits the highest level of
expressiveness, but at the expense of programming simplic-
ity. Stratosphere users, who choose to directly write their
data analytics programs as Nephele Job Graphs, are no longer
bound to a set of second-order functions but can freely imple-
ment the behavior of each vertex. When compiling the Job
Graph from a PACT program, the PACT layer exploits this
flexibility and injects additional code for data preparation
together with the user’s first-order function into a Nephele
vertex. This PACT data preparation code is then in charge of
reorganizing the incoming data (i. e. sorting, grouping, join-
ing the data) such that it obeys the properties expected by the
user’s encapsulated first-order function.

Nephele itself executes the received Job Graph on a set
of worker nodes. It is responsible for allocating the required
hardware resources to run the job from a resource manager,
scheduling the job’s individual tasks among them, monitor-
ing their execution, managing the data flows between the
tasks, and recovering tasks in the event of execution failures.
Moreover, Nephele provides a set of memory and I/O ser-
vices that can be accessed by the user tasks submitted. At the
moment, these services are primarily used by the PACT data
preparation code mentioned above.

During the execution of a job, Nephele can collect various
statistics on the runtime characteristics of each of its tasks,
ranging from CPU and memory consumption to information
on data distribution. The collected data are centrally stored
inside Nephele’s master node and can be accessed, for exam-
ple, by the PACT compiler, to refine the physical optimization
of subsequent executions of the same task. Further details on
Nephele, especially on its scheduling, communication, and
fault-tolerance strategies, are described in Sect. 7.

In order to increase the practical impact of our system, we
take special care to make Stratosphere integrate well with
existing, popular technologies. In particular, Stratosphere
provides support for the popular Hadoop distributed file sys-
tem and the cloud storage service Amazon S3, as well as for
Eucalyptus. We plan to support multi-tenancy by integrat-
ing Stratosphere with resource management systems, such as

Apache YARN. Moreover, Stratosphere can directly allocate
hardware resources from infrastructure-as-a-service clouds,
such as Amazon EC2.

3 Stratosphere by Meteor examples

Stratosphere has been designed to cover a wide variety of use
cases, including the analysis of structured data (e.g., spread-
sheets, relational data), semi-structured data (e.g., HTML
websites), and unstructured, textual data. In this section, we
present Meteor, one of Stratosphere’s top-most programming
interfaces by walking through two example programs: a TPC-
H data warehousing query and an application that includes
operators of two domain-specific packages for information
extraction and data cleansing

Meteor organizes domain-specific operators in packages,
and treats the former as first-class citizens, allowing users to
freely combine existing operators and extend the language
and runtime functionality with new operators. A main advan-
tage of this approach is that the operator’s semantics can be
accessed at compile time and can be potentially used for
optimization. To process a variety of different data types,
Meteor builds upon a semi-structured data model that extends
JSON [47]. The language syntax is inspired by Jaql [13];
however, we simplified many language features in order to
provide mechanisms for a seamless integration of new oper-
ators and to support n-ary input and output operators.

3.1 Structured data analysis

We introduce Meteor’s language features using a modified
version of TPC-H Query 15. The Meteor script that imple-
ments the query is shown in Listing 1. The script starts with
reading the lineitem table from a file (line 1). It subse-
quently selects a three-month time interval (lines 3–5) and
computes the total revenue for each supplier by grouping on
suppkey (lines 7–12). Finally, the script joins the grouped
records with the supplier table on the attribute suppkey
(lines 14–16), assembles the output format (lines 17–23), and
writes the result to a file (line 25).

Meteor statements can assign the result of an operator
invocation to a variable, which either refers to a materialized
data set or to a logical intermediate data set, i. e., the result
of an operator. Variables start with a dollar sign ($) to easily
distinguish data sets from operator definitions. For example,
the variable $li in line 1 refers to a logical data set, the result
of the read operator.

Each operator invocation starts with the unique name of
the operator (underscored in all listings) and is typically fol-
lowed by a list of inputs and a set of operator properties (dis-
played in italics), which are configured with a list of name/-
expression pairs. Consider the filter operator in lines 3–4:
the operator has input $li and is configured with a where

123



A. Alexandrov et al.

1 $li = read from ’lineitem.json’;
2

3 $li = filter $li where

4 ($li.shipdate >= ’1996 -01 -01’ and
5 $li.shipdate < ’1996 -04 -01’);
6

7 $gli = group $li by $li.suppkey
8 into {
9 supplier_no: $li[0]. suppkey ,

10 total_revenue: sum($li[*]. extPrice *
11 (1-$li[*]. discount)

)
12 };
13

14 $s = read from ’supplier.json’;
15 $joinResult = join $s, $gli where

16 $s.suppkey == $gli.supplier_no
17 into {
18 $s.suppkey ,
19 $s.name ,
20 $s.address ,
21 $s.phone ,
22 $gli.total_revenue
23 };
24

25 write $joinResult to ’result.json’;

Listing 1 TPC-H Query 15 variant as Meteor script

1 script ::= (statement ‘;’)*
2 statement ::= variable ’=’ operator
3 operator ::= name+ inputs? properties? ’;’
4 inputs ::= (variable ’in’)? variable (’,’

inputs )?
5 variable ::= ’$’name
6 properties ::= property properties?
7 property ::= name+ expression
8 expression ::= literal|array|object |...

Listing 2 Excerpt of Meteor’s EBNF grammar

property, which specifies the selection condition. Property
expressions are often only literals but may be as complex as
the property expression into of the join operator (e. g., lines
15–23), which specifies the schema of the resulting data set.

Listing 2 summarizes the general Meteor syntax in
extended Backus-Naur Form.

The relational package of Meteor offers a wide variety
of data transformation and matching operators on the JSON
data model, such as filter, transform (which allows for arbi-
trary field modifications), pivot (nesting and unnesting), split
(array de-normalization), group, join, union, set intersection,
and difference. We refer the reader to Table 1 and refer-
ence [37] for details.

3.2 Queries with domain-specific operators

Operators from different Meteor packages can be jointly used
to build complex analytical queries. Suppose a research insti-

1 using ie;
2 using cleansing;
3

4 $articles = read from ’news.json’;
5 $articles = annotate sentences $articles
6 use algorithm ’morphAdorner ’;
7 $articles = annotate entities $articles
8 use algorithm ’regex ’ and type ’person ’;
9 $peopleInNews = pivot $articles around

10 $person = $article.annotations [*].
entity

11 into {
12 name: $person ,
13 articles: $articles
14 };
15

16 $persons = read from ’person.json’;
17 $persons = remove duplicates
18 where average(levenshtein(name),
19 dateSim(birthDay)) > 0.95
20 retain longest(name);
21 $personsInNews = join $refPerson in

$persons ,
22 $newsPerson in $peopleInNews
23 where $refPerson.name == $newsPerson.

name
24 into {
25 $refPerson.*,
26 articles: $newsPerson.articles [*]. url
27 };
28

29 write $personsInNews to ’result.json’;

Listing 3 Meteor query combining information extraction, data
cleansing, and relational operators

tute wants to find out who of its past, and present affiliated
researchers have appeared in recent news articles for a PR
campaign. Given a set of employee records from the past
five years and a corpus of news articles, we would like to
find news articles that mention at least one former or present
employee.

Listing 3 displays the corresponding Meteor script. After
importing the necessary Sopremo packages (lines 1–2), the
news articles corpus is read from a file, and information
extraction (IE) operators are applied (lines 4–14) to anno-
tate sentence boundaries and the names of people men-
tioned in the articles. Subsequently, the data set is restruc-
tured with the pivot operator to group news articles by
person names (lines 9–14). In lines 16–20, the employee
records are read and duplicate records are removed using
the remove duplicates operator, configured with similar-
ity measure, threshold, and a conflict resolution function. The
data sets are then joined on the person name (lines 21–27).
The into clause specifies the output format, which contains
all employee attributes and the URLs of news articles men-
tioning a certain person.

123



Stratosphere platform for big data analytics

Table 1 Overview of available Sopremo operators

Operator Meteor keyword Description

Selection filter Filters the input by only retaining those elements where the given predicate
evaluates to true

Projection transform Transforms each element of the input according to a given expression

(Un)nesting nest Flattens or nests incoming records according to a given output schema

unnest

Join join Joins two or more input sets into one result-set according to a join condition.
A self-join can be realized by specifying the same data source as both
inputs. Provides algorithms for anti-, equi-, natural-, left-outer-, right-outer-,
full-outer-, semi-, and theta-joins

Grouping group Groups the elements of one or more inputs on a grouping key into one output,
such that the result contains one item per group. Aggregate functions, such
as count() or sum(), can be applied

Set/bag union union Calculates the union of two or more input streams under set or bag semantics

union all

Set difference subtract Calculates the set-based difference of two or more input streams

Set intersection intersect Calculates the set-based intersection of two or more input streams

Pivot pivot Restructures the data around a pivot element, such that each unique pivot
value results in exactly one record retaining all the information of the
original records

Replace (All) replace Replaces atomic values with with a defined replacement expression

replace all

Sorting sort Sorts the input stream globally

Splitting split Splits an array, an object, or a value into multiple tuples and provides a means
to emit more than one output record

Unique unique Turns a bag of values into a set of values

Sentence annotation / splitting annotate sentences Annotates sentence boundaries in the given input text and optionally splits the
text into separate records holding one sentence eachsplit sentences

Token annotation annotate tokens Annotates token boundaries in the given input sentencewise. Requires
sentence boundary annotation

Part-of-speech annotation annotate pos Annotates part-of-speech tags in the given input sentencewise. Requires
sentence and token boundary annotations

Parse tree annotation annotate structure Annotates the syntactic structure of the input sentencewise. Requires sentence
boundary annotations

Stopword annotation / removal annotate stopwords Annotates stopwords occurring in the given input and optionally replaces
stopword occurrences with a user-defined stringremove stopwords

Ngram annotation / splitting annotate ngrams Annotates token or character ngrams with user-defined length n in the given
input. Optionally, the input can be split into ngramssplit ngrams

Entity annotation / extraction annotate entities Annotates entities in the given input and optionally extracts recognized entity occurrences.
Supports general-purpose entities(e.g., persons, organizations, places, dates), biomedical
entities (e.g., genes, drugs, species, diseases), and user-defined regular expressions and
dictionaries. Requires sentence and token boundary annotations

extract entities

Relation annotation / extraction annotate relations Annotates relations sentencewise in the given input and optionally extracts recognized
relationships using co-occurrence- or pattern-based algorithms. Requires sentence, part-
of-speech and entity annotations

extract relations

Merge records merge Merges existing annotations of records which share the same ID

Data scrubbing scrub Enforces declaratively specified rules for (nested) attributes and filters invalid records

Entity mapping map entities Uses a set of schema mappings to restructure multiple data sources into
multiple sinks. Usually used to adjust the data model of a new data source to
a global data schema

Duplicate detection detect duplicates Efficiently finds fuzzy duplicates within a data set

Record linkage link records Efficiently finds fuzzy duplicates across multiple (clean) data sources

Data fusion fuse Fuses duplicate representations to one consistent entry with declaratively
specified rules

Duplicate removal remove duplicates Performs duplicate detection, subsequent fusion, and retains nonduplicates

Top Base, Middle Information Extraction, Bottom Data Cleansing

123



A. Alexandrov et al.

4 Extensibility in Stratosphere’s operator model

The previous examples in Sect. 3 have shown how Meteor
can be used to perform structured data analysis, extract infor-
mation from text, and cleanse data. This flexibility stems
from the underlying, semantically rich Sopremo operator
model. All operators (including relational ones) are orga-
nized in packages and dynamically loaded during the pars-
ing process of a Meteor script. Meteor can be seen as a
textual interface for Sopremo, and Meteor scripts are trans-
lated one-to-one into Sopremo plans. Besides the textual
Meteor interface, query plans of Sopremo operators could
also be composed with graphical interfaces or other query
languages.

Figure 2a depicts the Sopremo plan (which, in general can
be a directed acyclic graph) generated from the Meteor script
of Listing 3 by the Meteor parser. Each operator invocation
in the Meteor script corresponds to a Sopremo operator in the
plan. Meteor variables are translated to edges in the plan, sig-
nifying the data flow between Sopremo operators. Sopremo
operators are configured with the corresponding properties
in the Meteor script (we omit those from the figure). In the
remainder of this section, we briefly discuss the notions of
extensibility and operator composition in Sopremo. A more

in-depth discussion of the concepts can be found in refer-
ence [37].

To seamlessly integrate domain-specific Sopremo pack-
ages, these must satisfy some constraints. Each package and
its operators must be self-contained in three ways. First, oper-
ators are self-contained in that the Sopremo programmer pro-
vides a parallel implementation of new operators in addition
to their semantics. An operator can be defined either as a com-
position of other operators or as an elementary operator with a
corresponding PACT program (the directly lower program-
ming layer of Stratosphere) implementation. As Sopremo
does not allow recursive compositions, all operators can be
reduced to a (possibly large) set of interconnected elementary
operators, which are backed by PACT programs.

Second, operators expose their properties through a reflec-
tive API. The properties, such as the condition of a join,
are transparently managed and validated by the operator
itself. Operators may use their properties to choose an appro-
priate implementation. Thus, no additional knowledge out-
side of the packages is required to properly configure the
operators.

Third, the package developer may optionally provide rel-
evant metadata to aid the optimizer in plan transformation
and cost estimation.

Fig. 2 Sopremo plan and
PACT program corresponding to
the Meteor query in Listing 3. a
Sopremo plan b PACT program

(a) (b)

123



Stratosphere platform for big data analytics

Fig. 3 The “Remove duplicates” operator defined as a composite oper-
ator

To facilitate extensibility, we introduced the concept of
operator composition in Sopremo. Following the good prac-
tices of modularization and information hiding in software
engineering, developers can define complex operators using
simpler ones. This enables code reuse and allows complex
operators to immediately benefit from more efficient re-
implementations of simpler operators. Composition can also
improve optimization. Transformation rules that cannot be
applied to a composite operator might be valid for its build-
ing block operators.

Figure 3 shows the implementation of the duplicate
removal operator as a composite operator. Here, the dupli-
cate detection is performed by another Sopremo operator. To
remove the found duplicate records, we need to fuse the dupli-
cates (right hand side) and merge the result with all nondu-
plicate records (left hand side). The example demonstrates
nested compositions. Although duplicate detection may be
naïvely implemented as a theta join, most times it is a com-
plex composition that implements a multi-pass sorted neigh-
borhood or other advanced algorithms.

To illustrate the current analytical capabilities of the
Sopremo libraries that are shipped with the system, Table 1
lists selected operators and their functionality.

Sopremo plans are compiled to PACT programs by a pro-
gram assembler. Figure 2b shows a translated PACT program
for the Sopremo plan of Fig. 2a. The PACT programming
model is discussed in detail in the next section. The Sopremo
to PACT assembler translates each Sopremo operator into
one or more PACT operators. Before the PACT program
is assembled, composite Sopremo operators are recursively
decomposed into their individual operators until only ele-
mentary operators remain. These elementary operators can
be directly translated into the second-order functions that

PACT provides, such as Map and Reduce. Furthermore, the
assembler infers from all attribute fields that are referenced
in a Meteor script a compact data representation scheme to
quickly access these important fields in the tree-structured
Sopremo values. The PACT program is assembled by instan-
tiating the PACT implementations of all Sopremo operators
and connecting their inputs and outputs. The properties of the
Sopremo operators are embedded into the PACT program by
adding this information to the configuration of the respective
PACT operators.

5 Model for parallel programming

Stratosphere provides an explicit programming model, called
the PACT programming model, that abstracts paralleliza-
tion, hiding the complexity of writing parallel code. This
section discusses the data model of the PACT model (Sect.
5.1), the individual operators and the composition of one-
pass (acyclic) PACT programs from operators (Sect. 5.2),
and finally the composition of iterative (cyclic) PACT pro-
grams (Sect. 5.3).

5.1 Data model

PACT operators operate on a flat record data model. A data
set, an intermediate result produced by one PACT opera-
tor and consumed by another, is an unordered collection of
records. A record is an ordered tuple of values, each having
a well-defined data type. The semantics and interpretation of
the values in a record, including their types, are opaque to
the parallel runtime operators; they are manipulated solely
by the UDFs that process them.

Certain functions require to form groups of records by
attribute equality or by other types of associations. For such
operations, a subset of the record’s fields is defined as a key.
The definition of the key must include the types of the values
in these fields to allow the runtime operators to access the rel-
evant fields (for sorting and partitioning) from the otherwise
schema-free records.

Nested Sopremo JSON objects are converted to records
during the compilation of Sopremo plans to PACT programs.
JSON nodes that act as keys are translated to individual
record fields.

5.2 PACT operators and acyclic PACT programs

A PACT is a second-order function that takes as argument
a data set and a first-order user-defined function (UDF).
A PACT operator or simply operator consists of a PACT
second-order function and a concrete instantiation of the
UDF. PACTs specify how the input data are partitioned into
independent subsets called parallelization units (PUs). The

123



A. Alexandrov et al.

Fig. 4 A PACT operator using a Reduce PACT

actual semantics of data manipulation is encapsulated in
the user-defined functions (UDFs). The PACT programming
model is declarative enough to abstract away parallelism, but
does not directly model semantic information as the Sopremo
layer; this is encapsulated within the UDF logic and largely
hidden from the system. While this may seem limiting, it
enables the specification of a wider variety of data analysis
programs (e. g., reduce functions that are not simple aggre-
gates [27]).

Figure 4 shows the structure of a PACT operator that uses
the Reduce function as its PACT. The input data set is log-
ically grouped using the key attribute (“color” in the fig-
ure, which corresponds to the first attribute). Each group of
records with a certain key value forms a parallelization unit.
The UDF is applied to each PU independently. By speci-
fying the operator using the Reduce PACT, the programmer
makes a “pact” with the system; all records that belong to the
same PU will be processed together by a single invocation of
the UDF. The logical division of a data set into PUs can be
satisfied by several physical data-partitioning schemes. For
example, in Fig. 4, PUs can be physically partitioned into two
nodes as indicated by the thick horizontal dotted line: PU1

resides in node 1, and PU2 and PU3 reside together in node
2. The logical output of the PACT operator is the concatena-
tion of the outputs of all UDF invocations. In the example, the
UDF collapses records into a single record per group (e. g.,
computing an aggregate) and returns the key value together
with the computed aggregate.

Currently, five second-order functions (shown in Fig. 5)
are implemented in the system. In addition, we have devel-
oped two higher-order functions used for iterative processing
(we discuss those later). The Map creates a PU from every
record in the input. The Reduce function forms a PU with
all records that have the same value for a user-defined key
attribute.2

The Match, Cross, and CoGroup PACTs operate on two
input data sets. The parallelization units of the Match function
are all pairs of records that have the same key attribute value.

2 We follow the definitions from the original MapReduce paper [22] but
exclude execution-specific assumptions (such as the presence of sorted
reduce inputs).

1 class DupElim extends CoGroupStub {
2 void cogroup (
3 Iterator <PactRecord > persons ,
4 Iterator <PactRecord > duplicates ,
5 Collector <PactRecord > output) {
6 if (! duplicates.hasNext ())
7 // No duplicates

8 out.collect(persons.next ());
9 else {

10 PactRecord cleanPerson =
11 merge (persons.next(), duplicates );
12 out.collect (cleanPerson );
13 }
14 }
15 }
16 ...
17 int SID = 0;
18 CoGroupContract =
19 CoGroupContract.build (DupElim.class ,

PactLong.class , SID , SID);

Listing 4 An example of UDF code for a CoGroup operator

Match therefore performs an inner equi-join and applies the
UDF to each resulting record pair. The Cross function dic-
tates that every record of the first input together with every
record of the second input forms a PU, performing a Carte-
sian product. CoGroup generalizes Reduce to two dimen-
sions; each PU contains the records of both input data sets
with a given key. The source of records (left or right input)
is available to the UDF programmer. Compared with Match
(record-at-a-time join), CoGroup is a set-at-a-time join. As
such, CoGroup subsumes Match with respect to expressive-
ness, but it has stricter conditions on how the PUs are formed
and hence fewer degrees of freedom for parallelization. For
a formal definition of the five PACTs, we refer the reader to
reference [43].

Listing 4 shows a possible PACT implementation code of
the “Duplicate Removal” operator from Sect. 3.2 (see also
Table 1). The Java class inherited from (CoGroupStub) indi-
cates the type of PACT (CoGroup). User code is encapsulated
in the cogroup method. The inputs (persons and possible
duplicates) are grouped on the first field, personId. This
is specified in the code that instantiates the operator (lines
17–19). The UDF is called for each person together with its
(zero or more) duplicates. If duplicates are found, they are
merged to form a cleaned version of the person record.

We defer the discussion of programs that make repeated
passes over the input until the next section. For now, a PACT
program is a directed acyclic graph with PACT operators,
data sources, and data sinks as nodes. Operators with multi-
ple successors forward the same data to each successor and
thus behave similar as, for example, common subexpressions
in SQL. Figure 2b shows the composite Meteor/Sopremo
example of Sect. 3.2 transformed to a PACT program. The
program has two data sources, Persons and News. For exam-

123



Stratosphere platform for big data analytics

(a) (b) (c) (d) (e)

Fig. 5 The five second-order functions (PACTs) currently implemented in Stratosphere. The parallelization units implied by the PACTs are enclosed
in dotted boxes. a Map b Reduce c Cross d Match e CoGroup

ple, duplicate removal is implemented as CoGroup over the
person’s input and the output of the preceding Cross. The
UDF is invoked on a list containing exactly one person and a
list of possible duplicates. If the duplicate list is not empty, it
is merged into one “clean” person record with the person list.
The program has one data sink, Results, which writes every
record delivered from the preceding Match operator into the
underlying file system. PACT programs can be generated by
the Sopremo compiler or specified by hand.

5.3 Iterative PACT programs

Many data analysis tasks cannot be implemented as algo-
rithms that make a single pass over the data. Rather, they are
of iterative nature, repeating a certain computation to refine
their solution until a convergence criterion is reached. The
PACT programming model supports the expression of such
programs through higher-order fixpoint operators [26].

To achieve good performance without exposing explicit
mutable state, PACT offers two different declarative fixpoint
operators: one for Bulk- and one for Incremental Iterations.
Both are defined by means of a step function that is evaluated
repeatedly over a data set called the partial- or intermediate
solution (see Fig. 6). The step function is an acyclic PACT
program. One parallel application of the step function to all
partitions of the partial solution is called a superstep [65].

Bulk Iterations execute the PACT program that serves as
the step function in each superstep, consuming the entire
partial solution (the result of the previous superstep or the
initial data set) and recompute the next version of the partial
solution, which will be consumed at the next iteration. The
iteration stops when a user-defined termination criterion is
satisfied.

In Incremental Iterations, the user is asked to split the
representation of the partial solution into two data sets: a
solution set (S in Fig. 5b) and a workset (W in Fig. 5b). At
each superstep, an incremental iteration consumes only the
working set and selectively modifies elements of the solution
set, hence incrementally evolving the partial solution rather
than fully recomputing it. Specifically, using S and W , the
step function computes the next workset and a delta set (D

in Fig. 5b), which contains the items to be updated in the
solution set. The new working set holds the data that drive
the next superstep, while the solution set holds the actual state
of the partial solution. Elements of the solution set (termed
“cold”) that are not contained in D need not be updated. To
facilitate the efficient merge between the current solution set
and the delta set, each element in the solution set must be
uniquely addressable by a key.

When applicable, incremental iterations typically lead to
more efficient algorithms, because not every element in the
intermediate solution needs to be examined in each superstep.
The sparse computational dependencies present in many
problems, and data sets allow a superstep to focus on the
“hot” parts of the intermediate solution and leave the “cold”
parts untouched. Frequently, the majority of the intermediate
solution cools down comparatively fast, and the later super-
steps operate only on a small subset of the data. Note that
the intermediate solution is implicitly forwarded to the next
superstep, not requiring the algorithm to recreate it.

Programmers implement iterative algorithms by defining
the step function as a regular acyclic PACT program that
uses the partial solution as a data source and next partial
solution as a sink. This step function is then embedded into
a fixpoint operator that takes an initial partial solution and
invokes the step function repeatedly on the next version of the
intermediate solution until a certain termination condition is
reached. While bulk iterations require an explicit termination
condition (either a convergence criterion or a fixed number
of supersteps), incremental iterations terminate when they
produce an empty working set.

Figure 6 shows a step function for the bulk and an incre-
mental version of a graph algorithm. This generic example
algorithm associates an ID with each vertex and propagates
the ID from each vertex to its neighbors, where each neigh-
bor adopts the ID if it is smaller than its own current ID. This
algorithm eventually distributes IDs according to connected
components, but is in a slightly modified version applicable
to many other graph problems, such as shortest paths and
maximum flow. In the bulk version, the step function joins
the vertex state with the edges to create candidates for each
vertex’s neighbors (Match) and then selects the minimum

123



A. Alexandrov et al.

Fig. 6 An algorithm that finds
the connected components of a
graph as a bulk iteration and an
incremental Stratosphere
iteration. a Bulk iteration b
Incremental iteration

(a) (b)

ID from the candidates for each vertex (Reduce). The incre-
mental version holds the candidate IDs in the workset and
the vertex state as the solution set. In addition to the afore-
mentioned operations, it joins the minimal candidate with the
solution set and checks whether the selected ID is actually
new. Only in that case, it returns a new value for the vertex,
which goes into the delta set and into the Match that creates
the workset for the next superstep. By selectively returning
or not returning values from the join between the workset
and solution set, the algorithm realizes the dynamic com-
putation that excludes unchanged parts of the model from
participating in the next superstep.

We refer the reader to reference [26] for a complete treat-
ment of iterations in Stratosphere. At the time of this writ-
ing, the iteration’s feature is in an experimental stage and
has not been integrated with Sopremo and Meteor. Iterative
programs are compiled to regular DAG-shaped Nephele Job
Graphs that send upstream messages to coordinate superstep
execution.

6 Optimization in Stratosphere

This section discusses Stratosphere’s optimizer. The opti-
mizer compiles PACT programs into Nephele Job Graphs.
Sopremo plans are translated into PACT programs prior to
optimization as discussed in Sect. 4. The overall architecture

of the optimizer is presented in Sect. 6.1. Sections 6.2 and 6.3
discuss the reordering of PACT operators and the generation
of physical plans.

6.1 Optimizer overview

The Stratosphere optimizer builds on technology from par-
allel database systems, such as logical plan equivalence,
cost models, and interesting property reasoning. However,
there are also aspects that clearly distinguish it from prior
work.

Many of the distinguishing features of Stratosphere’s opti-
mizer compared with conventional query optimizers origi-
nate from differences in program specification. Most rela-
tional database systems provide a declarative SQL interface.
Queries specified in SQL are translated into expression trees
of relational algebra. These expression trees are rewritten
using transformation rules, which are based on commuta-
tivity and associativity properties of relational operators and
finally compiled into physical execution plans.

In contrast to a relational query, PACT programs are
directed acyclic graphs (DAGs) of PACT operators. Since
DAGs are more general than trees, traditional plan enumera-
tion techniques need to be adapted. Operators differ as well;
while relational operators have fully specified semantics,
PACT operators are parallelizable second-order functions

123



Stratosphere platform for big data analytics

Fig. 7 The different program transformation phases of the
Stratosphere optimizer

that encapsulate user-defined first-order functions. Due to
the presence of arbitrary user code, the semantics of a PACT
operator are not, in general, known by the optimizer. There-
fore, plan rewriting rules as known from relational optimizers
do not apply in the context of PACT programs. In addition,
the lack of semantics hinders the computation of reliable size
estimates for intermediate results, which are important for
cost-based optimization. Finally, relational optimizers can
leverage their knowledge of data schema. In contrast, PACT’s
data model is based on records of arbitrary types in order to
support a wide variety of use cases. Data is only interpreted
by user code and hence opaque to the optimizer.

Figure 7 shows the architecture stages of the Stratosphere
optimizer, and Fig. 8 shows the different representations of
a program as it passes through the different optimization
stages. The optimizer compiles PACT programs into Nephele
Job Graphs. Data processing tasks specified as Sopremo
plans are translated into PACT programs prior to optimization
and compilation. This process was described in Sect. 4. The
optimizer itself consists of four phases. Similar to many rela-
tional optimizers, the optimization process is separated into a
logical rewriting and a physical optimization phase. The sep-
aration between logical and physical optimization is a result
of the bottom-up historical evolution of the Stratosphere sys-
tem (the PACT layer and physical optimization predate the

(a) (b) (c) (d)

Fig. 8 Plan transformation through the different phases of the opti-
mizer. A submitted PACT program is modified by logical optimization
and produces an equivalent program after operator reordering. Read and
write sets are shown as records with green and red fields. Then, a phys-

ical plan with annotated local execution and data shipping strategies is
obtained, and finally a Nephele Job Graph is emitted by the optimizer.
a Original PACT program b Modified PACT program c Physical plan
d Nephele Job Graph (color figure online)

123



A. Alexandrov et al.

logical optimization and the Sopremo layer); we are cur-
rently designing an optimizer that unifies the optimization
of Sopremo and PACT operators and chooses the order of
operators and their physical execution strategies in a single
pass. See Sect. 9 for details.

Prior to optimization, the optimizer transforms a PACT
program into an internal representation. This representation
is a DAG consisting of operator nodes that represent data
sources, data sinks, PACT operators, and internal operations,
such as “Combine” (if applicable for a Reduce) or “Temp”
(materialization) operators. Internal operators do not change
the semantics of a data flow; however, they can improve its
execution, and they are sometimes required to prevent dead-
locks (see Sect. 6.3 for details).

In the next phase, the optimizer generates semantically
equivalent plans by reordering operators. Rewriting rules as
known from relational optimizers do not directly apply in our
context as the optimizer is not aware of the semantics of the
UDF operators. Section 6.2 presents the operator reordering
techniques of the optimizer, which are based on the detec-
tion of attribute access conflicts, static code analysis, and
switching of consecutive operators.

Physical optimization comes after operator reordering.
The second-order function of an operator defines its logi-
cal parallelization. For a given second-order function, there
can be multiple physical data shipping strategies (such as
hash- or range partitioning or broadcasting), that provide the
parallelization requirements, as well as several local physical
execution strategies (such as sort- or hash-based techniques).
Similar to database systems, interesting properties [60] can
be leveraged. The optimizer generates a physical execution
plan bottom-up by choosing execution strategies and con-
sidering interesting properties. The optimization process is
explained in detail in Sect. 6.3. Finally, the resulting execu-
tion plan is translated into a Nephele Job Graph and submitted
for execution.

6.2 Operator reordering

In the first optimization phase, the Stratosphere optimizer
reorders operators similarly to the logical optimization phase
in relational optimizers [43]. However, as mentioned in
Sect. 6.1, traditional transformation rules cannot be directly
applied due to the unknown semantics of the UDFs inside of
the PACT operators. Instead, we defined and proved two suf-
ficient conditions to reorder two successive PACT operators
without changing the program semantics. These conditions
are based on the detection of conflicting attribute accesses
and the preservation of group cardinalities. We use the notion
of read and write field sets to hold the information of all fields
that an UDF reads and writes. Thereby, a write access to a
record may add or remove an attribute or modify the value
of an existing attribute.

The first reordering condition compares the read and write
sets of two successive PACT operators and checks for over-
lapping access patterns. In order to evaluate to true, only
the read sets of the operators may intersect. Otherwise, the
operators have conflicting read-write or write-write accesses.
This reasoning is similar to conflict detection in optimistic
concurrency control methods [50] and compiler techniques to
optimize loops. The second condition only applies for group-
based PACT operators, such as Reduce and CoGroup. Since
the semantics of a grouping operator might depend on the size
of its input group, this condition ensures that input groups
are preserved if the operators are reordered. We showed that
our conditions are applicable for all combinations of the
set of currently supported second-order functions (see refer-
ence [43]). Figures 8a, b depict two semantically equivalent
PACT programs for the TPC-H example query discussed in
Sect. 3.1. Assuming that the left plan was given as input to
the optimizer, our reordering techniques allow to switch the
Reduce and Match operators, which yields the plan on the
right hand side. The Match and Reduce operators perform the
join and grouped aggregation, respectively. This transforma-
tion is possible because both operators have nonconflicting
read and write sets, which are indicated in the figures by
green and red-colored record fields above and below each
operator. Match also fulfills the group-preservation condi-
tion. Since it is a primary-key foreign-key join on the group-
ing attribute, Match does not change the cardinality of the
individual reduce groups. Therefore, this transformation is
an invariant group transformation as known from relational
query optimization [20].

In order to evaluate the conditions, the optimizer requires
read and write sets and bounds on the output cardinality
(0, 1, n) of the operator UDFs. We employ static code analy-
sis (SCA) techniques to automatically derive this information
[41]. Our approach leverages our knowledge of and control
over the API that the user uses to access record fields. Hence,
we can safely identify all record accesses of an UDF by track-
ing the corresponding API calls, e. g., r.getField(1) to
read field 1 from record r or r.setField(2,v) to write
value v to r ’s field 2. The extraction algorithm uses con-
trol flow, Def-Use, and Use-Def data structures obtained
from an SCA framework to trace the effects of record
accesses through the UDF. Our approach guarantees cor-
rectness through conservatism. Field accesses can always be
added to the corresponding read or write sets without loss of
correctness (but with loss of optimization potential). Super-
sets of the actual read and write sets might only imply addi-
tional access conflicts; therefore, the optimizer might miss
valid optimization choices but will never produce semanti-
cally incorrect transformations.

Based on the conditions to identify semantic-preserving
operator reorderings, we designed a novel algorithm to enu-
merate all valid transformations of the input PACT pro-

123



Stratosphere platform for big data analytics

gram [43]. In contrast to relational optimizers, where plans
are built by subsequently adding operators, our algorithm is
based on recursive top-down descent and binary switches of
successive operators. We enumerate operator orders only on
programs where the data flow resembles a tree. For data flows
that are DAGs but not trees, i. e., where some operators have
multiple successors, the problem becomes similar to that of
relational optimization with common subexpressions. As a
simple solution, we split the data flow after each such opera-
tor, thereby decomposing it to a set of trees. These trees are
then individually optimized and afterward recomposed to a
DAG. A limitation of this method is that operators can never
be moved across operators with multiple successors.

Given the reordering conditions and the plan enumeration
algorithm, the optimizer can emulate many transformations
that are known from the relational domain such as selec-
tion and projection push down, join-order enumeration, and
invariant grouping transformations. However, also nonrela-
tional operators are included into the optimization process.
A full adaption of the reordering algorithm to DAGs is part
of our future work.

6.3 Physical optimization

After the logical rewriting component has picked an equiva-
lent PACT program, the latter is further optimized to produce
a physical execution plan with concrete implementations of
data shipping and local operator execution strategies using
estimated execution costs [8].

Stratosphere’s runtime supports several execution strate-
gies known from parallel database systems. Among these
strategies are repartition and broadcast data transfer strate-
gies and local execution strategies, such as sort-based group-
ing and multiple join algorithms. In addition to execution
strategies, the optimizer uses the concept of interesting prop-
erties [60]. Given a PACT operator, the optimizer keeps track
of all physical data properties, such as sorting, grouping, and
partitioning, that can improve the operator’s execution [73].
Figure 8c shows a possible physical execution plan for the
PACT program of Fig. 8b. Here, the Match operator ben-
efits from the data of the left input being partitioned on
lineitem.suppkey due to the preceding Reduce operator.
This property is leveraged by locally forwarding the data
between Reduce and Match and hence avoiding data transfer
over the network. However, in contrast to the relational set-
ting, it is not obvious whether an operator’s UDF preserves
or destroys physical data properties, i. e., a physical property
can be destroyed by an UDF that modifies the correspond-
ing record field. The optimizer uses the notion of constant
record fields, which can be derived from an UDF’s write set
(see Sect. 6.2) to reason about interesting property preser-
vation. In this plan, attribute lineitem.suppkey is held in
record field 5. Since the Reduce operator in our example

does not modify field 5 as indicated in Fig. 8b, it preserves
the partitioning on that field.

The optimizer uses a cost-based approach to choose the
best plan from multiple semantically equivalent plan alter-
natives. The cost model is based on estimated network I/O
and disk I/O as these are the factors that dominate most jobs
in large clusters (we are currently using CPU cost for some
optimization decision in a prototypical stage). Therefore, the
size of intermediate results must be estimated. While this is
a challenging task in relational database systems, it is even
more difficult in the context of the PACT programming model
due to its focus on UDFs. In the current state, the optimizer
follows a pragmatic approach and relies on the specification
of hints, such as UDF selectivity. These hints can be either
set manually by a user, derived from upwards layers, or in
the future be retrieved from a planned metadata collection
component (see Sect. 9).

The algorithm to enumerate physical plans is based on
a depth-first graph traversal starting at the sink nodes of the
program. While descending toward the sources, the optimizer
tracks interesting properties. These properties originate from
the specified keys of the PACT operators and are traced as
long as they are preserved by the UDFs. When the enumer-
ation algorithm reaches a data source, it starts generating
physical plan alternatives on its way back toward the sinks.
For each subflow, it remembers the cheapest plan and all
plan alternatives that provide interesting properties. Finally,
the best plan is found, after the algorithm reached the data
sinks.

To correctly enumerate plans for arbitrary DAG data flows,
we analyze the program DAGs to identify where the data flow
“branches” (i. e., operators with multiple outgoing edges) and
which binary operators “join” these branches back together.
For these joining operators, the subplans rooted at the branch-
ing operator are treated like common subexpressions and the
plan candidates for that operator’s inputs must have the same
subplan for the common subexpression. Furthermore, data
flows may deadlock if some, but not all, paths between a
branching operator and the respective joining operators are
fully pipelined. When we find such a situation, we place arti-
ficial pipeline breakers on the pipelined paths. This is done
as part of the candidate plan enumeration and included in the
cost assessment of subplans.

The compilation of iterative PACT programs features
some specific optimization techniques [26]. Prior to phys-
ical plan enumeration, the optimizer classifies the edges of
the data flow program as part of the dynamic or constant data
path. In Fig. 6, constant data paths are indicated by thick
dotted arrows (they consist of the scan operator of the graph
structure in both plans). The dynamic data path comprises all
edges that transfer varying data in each iteration. Edges that
transfer the same data in each iteration belong to the constant
data path. During plan enumeration, the costs of all operators

123



A. Alexandrov et al.

on the dynamic data path are weighted with an user-specified
number of iterations (if this is unknown, we have found that
a magic number equal to a few iterations is sufficient in most
cases). Therefore, the optimizer favors plans that perform
much work within the constant data path. Subsequent to plan
enumeration, the optimizer places a “Cache” operator at the
intersection of constant and the dynamic data path. When
executing the program, the data of the constant path are read
from this Cache operator after it has been created during
the first iteration. Note that the cached result may be stored
in a variety of forms depending on the requirements of the
dynamic data path, e. g., in sorted order or in a hash table
data structure.

Further optimizations apply for incremental iterative pro-
grams where the solution set is updated with the delta set after
each iteration. The elements of the solution set are identified
by a key, and the set itself is stored partitioned and indexed
by that key. An update of the solution set is realized by an
equi- or outer-join with the delta set on the key. For this join,
the partitioned index of the solution set can be exploited.
Furthermore, the optimizer can decide that the delta set is
not materialized, and instead, the solution set is immediately
updated. However, this option only applies if it is guaranteed
that elements from the solution set are accessed only once
per iteration and that only local index partitions are updated.

7 Parallel dataflow execution

After a program has been submitted to Stratosphere (either
in the form of a Meteor query, a Sopremo plan, a PACT pro-
gram, or a Nephele Job Graph), and after it has passed all the
necessary compilation and transformation steps, it is sub-
mitted for execution to Nephele,3 Stratosphere’s distributed
execution engine.

The Nephele execution engine implements a classic mas-
ter/worker pattern (Fig. 9). The master (called Job Man-
ager) coordinates the execution while the workers (called
Task Managers) execute the tasks and exchange intermedi-
ate results among themselves. The Job Manager pushes work
to the Task Managers and receives a number of control mes-
sages from them, such as task status changes, execution pro-
filing data, and heartbeats for failure detection. To reduce
latency, messages for tasks are bundled and pushed eagerly,
rather than in periodic intervals.

The execution of a program starts with the Nephele Job
Manager receiving the program’s Job Graph. The Job Graph
is a compact description of the executable parallel data flow.
Each vertex represents a unit of sequential code, which is
one or more pipelined data flow operators and/or UDFs. The

3 Nephele was a cloud nymph in ancient Greek mythology. The name
comes from Greek “νεφoς ,” meaning “cloud.” The name tips a hat to
Dryad [44] (a tree nymph) that influenced Nephele’s design.

Fig. 9 Nephele’s process model and the transformation of a Job Graph
into an Execution Graph

channels represent the passing of records between the oper-
ators and describe the pattern by which the parallel instances
of a pair of vertices connect to each other. Example of these
patterns is all-to-all, which is used to re-partition data, or
pointwise, for simple forward passing in a local pipeline. In
order to track the status of the parallel vertex and channel
instances individually, the Job Manager spans the Job Graph
to the Execution Graph, as shown in Fig. 9. The Execution
Graph contains a node for each parallel instance of a vertex,
which we refer to as a task.

7.1 Tasks, channels, and scheduling

Tasks go though a life cycle of scheduling, deploying, run-
ning, and finished. Initially, all tasks are in the scheduling
phase. When a task becomes active (deploying), the Job
Manager selects a suitable computing instance (effectively
a share of resources) to deploy the task upon. This instance
may be requested from a cloud service, or a resource manager
of a local cluster. Having found a suitable instance, the Job
Manager pushes to that instance a deployment description of
the task including optionally required libraries, if those are
not yet cached on the target instance. To reduce the number
of deployment messages, a task is deployed together with
all tasks that it communicates with through local pipelines.
When deployed, each task spawns a thread for its code, con-
suming its input streams and producing output streams.

The Job Manager deploys initially all input tasks with their
local pipelines. All other tasks are deployed lazily; when a
task first tries to send data to another task via network, it will

123



Stratosphere platform for big data analytics

request the target address of that task from the Job Manager.
If that target task is still in the scheduling phase, the Job Man-
ager will commence its deployment. The channels through
which tasks exchange data are typically pipelined through
main memory or TCP streams, to reduce latency and I/O
load. They may be materialized as files, if a pipeline breaker
is explicitly required. Besides transferring data buffer from
the source to the target task, channels may also transfer cus-
tom events. An event is a metadata message that can be sent
both in the same direction as the data flows (in order with the
records) or in the opposite direction. Internally, Stratosphere
uses those events among other things for channel startup
and teardown, and to signal superstep transitions for itera-
tive algorithms [26].

In practice, the source and target tasks of several different
network channels may be co-located on the same Task Man-
ager. This is due to intra-node parallelism or different tasks
co-partitioning their data. Instead of naïvely creating one
TCP connection for each network channel, Stratosphere mul-
tiplexes network channels through TCP connections, such
that every Task Manager has at most one physical TCP con-
nection to each other Task Manager.

Because network bandwidth is often a scarce resource;
reducing the number of transferred bytes is frequently a
suitable means of increasing performance. Compressing the
buffers with a general-purpose compression algorithm (zip,
lzo, etc) before shipping them trades extra CPU cycles for net-
work bandwidth savings. Different compression algorithms
have different tradeoffs, where more CPU intensive compres-
sion algorithms typically yield higher compression rates and
thus save more network bandwidth. The best compression
algorithm for a certain program depends on the type of data
shipped (e. g., text or media) and other program character-
istics, for example, on how many spare CPU cycles, it has
before being CPU bound. Nephele supports various compres-
sion algorithms plus a mechanism that dynamically adjusts
the compression algorithm to find the algorithm best suitable
for a certain channel [40].

7.2 Fault tolerance

Fault-tolerance techniques allow systems to recover the pro-
gram execution in the presence of failures. Details about
the fault-tolerance mechanisms used by Stratosphere are
described in a previous publication [39]; this section gives a
brief overview of these techniques.

Stratosphere’s fault tolerance is predicated on log-based
rollback recovery; The system materializes intermediate task
results and, in the presence of a failure, resets the affected
tasks and replays their input data from the materialization
points. If the input to a task has not been materialized, the pre-
decessor tasks are re-executed as well, tracking back through
the data flow graph to the latest materialized result (possibly

the original input). The propagation of restarts is similar to
rollback propagation in uncoordinated checkpoint environ-
ments [24,66] and has been adopted, in one form or another,
by many data flow engines that execute analytical queries:
Hadoop [5] (where the data flow is the simple fixed Map-
Shuffle-Reduce pipeline), Dryad [44], or Spark [70].

The aforementioned systems all implement the blocking
operator model, i. e., each operator produces its complete
result before any downstream operator may start consum-
ing the result. While this model often increases the execu-
tion latency, it simplifies the fault tolerance mechanism, as it
ensures that a task consumes only intermediate results that
are completely available. It prevents situations where a down-
stream task consumed a portion of its predecessor’s output,
but the remainder became unavailable due to a failure. In con-
trast, Stratosphere supports pipelined tasks and materializes
checkpoints “to the side” without breaking the pipeline. Dur-
ing task execution, the system copies the buffers that contain
the task’s result data into a memory cache. If the cache is
full, the buffers are gradually moved to disk. Once the last
result of a task was produced, a checkpoint is fully materi-
alized like in the blocking model. However, in Stratosphere,
subsequent tasks do not have to wait until the checkpoint was
written to disk to process data. In case of a task failure, any
downstream tasks that have already consumed parts of this
task’s result data are restarted as well. If the failed task is
known to produce deterministic results, we keep the down-
stream tasks running and they deduplicate incoming buffers
using sequence numbers (similar to package deduplication in
TCP). If writing a checkpoint to disk fails but all result data
have been forwarded, the system discards the checkpoint and
continues processing. In case of a task failure, the system has
to recover from an earlier checkpoint or the original input
data.

Since Stratosphere’s runtime is generally pipelined, the
system can decide which task results to materialize and which
to stream. Some task results may be very large and force the
checkpoint to disk. In many cases, these are not worth mate-
rializing, because reading them from disk is not significantly
faster then recomputing them from a smaller previous check-
point. The current prototype of our fault tolerance implemen-
tation employs a heuristic, we call ephemeral checkpointing,
to decide at runtime whether to create a checkpoint or not;
We start materializing a task’s output by keeping the result
buffers. When running low on memory resources, we discard
materialization points where certain conditions are met; (1)
The task’s produced data volume is large, as determined by
the ratio of consumed input versus produced output buffers
up to that point, and (2) the average processing time per
buffer is below a certain threshold, indicating a fast task that
can efficiently recompute its output (as opposed to a CPU-
intensive UDF, for example). A preselection of interesting
checkpointing positions can be done at optimization time

123



A. Alexandrov et al.

based on estimated result sizes. We present evaluation results
of our ephemeral checkpoint technique in Sect. 8.7.

7.3 Runtime operators

Next to UDF drivers, Stratosphere’s runtime provides opera-
tors for external sorting, hybrid hash join, merge join, (block)
nested loops join, grouping, co-grouping, as well as ship-
ping strategies for hash partitioning, balanced range parti-
tioning, and broadcasting. In principle, their implementation
follows descriptions in the database literature (e. g., [30,32]).
We modified the algorithms slightly to be suitable for a lan-
guage without explicit memory control, as explained in the
next paragraphs.

Stratosphere is implemented in Java. For a framework that
is designed to execute to a large extent user-defined func-
tions, Java is a good match,4 as it offers an easier program-
ming abstraction than, for example, C or C++. At the same
time, Java still allows a good level of control about the exe-
cution process and offers good performance, if used well.
The implementation follows the requirements to implement
operators for data intensive processing in Java.

One central aspect is the handling of memory, because
Java, in its core, does not give a programmer explicit con-
trol over memory via pointers. Instead, data items are typi-
cally represented as objects, to which references are passed
around. A typical 64bit JVM implementation adds to each
object a header of 2 pointers (of which one is compressed,
12 bytes total) and pads the object to have a size, which is
a multiple of 8 bytes [46]. Consider the example of a tuple
containing 4 fields (integers or floating point numbers with
4 bytes each), having a net memory requirement of 16 bytes.
A generic object-oriented representation of that tuple would
consequently require up to 64 bytes for the 4 objects repre-
senting the fields, plus 32 bytes for an array object holding
the pointers to those objects. The memory overhead is hence
more than 80 %. A single custom code-generated object for
the record still consumes 32 bytes—an overhead of 50 %.

An additional downside of the classic object-oriented
approach is the overhead of the automatic object dealloca-
tion through the garbage collector. Java’s garbage collection
works well for a massive creation and destruction of objects,
if its memory pools are large with respect to the number of
objects that are alive at a certain point in time. That way,
fewer garbage collections clear large amounts of objects in
bulk. However, all memory dedicated to the efficiency of the
garbage collector is not available to the system for sorting,
hash tables, caching of intermediate results, or other forms
of buffering.

4 When referring to Java, we refer also to other languages built on top
of Java and the JVM, for example, Scala or Groovy.

To overcome these problems, we designed the runtime to
work on serialized data in large byte arrays, rather than on
objects. The working memory for the runtime operators is
a collection of byte arrays resembling memory pages (typi-
cally of size 32KiBytes). Each record is a sequence of bytes,
potentially spanning multiple memory pages. Records are
referenced via byte offsets, which are used internally in a
similar way as memory pointers. Whenever records need to
be moved, for example, from a sort buffer into the buffers
of a partitioner, the move operation corresponds to a simple
byte copy operation. When certain fields of the record need
to be accessed, such as in a UDF, the fields are lazily dese-
rialized into objects. The runtime caches and reuses those
objects as far as possible to reduce pressure on the garbage
collector.

Toward the runtime operators, the records are described
through serializers (record layout, length, copying) and com-
parators (comparisons, hashing). For sorting and hashing
operators, every comparison still incurs an invocation of a vir-
tual (non inline-able) function on the comparator, potentially
interpreting a record header in the case of variable length data
types. To reduce that overhead, we generate normalized keys
and cache hash codes, as described by Graefe et al. [31].
This technique allows the operators to work to a large extent
with byte-wise comparisons agnostic to specific record lay-
outs.

An additional advantage of working with serialized data
and a paged memory layout is that for many algorithms, the
pages containing the records can be directly written to disk
in case of memory pressure, yielding implementations that
destage efficiently to secondary storage. The result of these
implementation techniques is a memory efficient and robust
behavior of the runtime operators, which is essential for data
intensive applications.

One can naïvely map the DAG of operators from the exe-
cution plan (cf. Sect. 6) to a Job Graph by making each oper-
ator its own vertex. However, recall that this way, each oper-
ator runs its own thread and the vertices communicate with
each other using the stream model. If matching the number
of threads per instance to the number of CPU cores, this eas-
ily leads to under-utilization of the CPU, if the operators’
work is not balanced. In case of having multiple operators
per core, it incurs unnecessary context switches and synchro-
nization at thread-to-thread handover points. For that reason,
we put multiple operators into one vertex, if they form a
local pipeline. An example would be data source with a Map
UDF, a sort operator, and a preaggregation. We use a combi-
nation of push- and pull-chaining. Pull-chaining corresponds
to nesting iterators, and is typically referred to as the “Vol-
cano Execution Model” [33]. However, certain UDFs pro-
duce multiple records per invocation, such as unnesting oper-
ations. To keep the programming abstraction simple, we do
not force the programmer to write such UDFs in the form of

123



Stratosphere platform for big data analytics

an iterator, as that usually results in more complex code5. In
such cases, we chain the successor tasks using an abstraction
of collectors, which implement an accept() function. This
function is the symmetric push counterpart to the iterators’
pull function (typically called next()).

8 Experimental evaluation

We experimentally evaluate the current version of Strato-
sphere against other open-source systems for large-scale
data processing. To that purpose, we conducted a series of
experiments comparing Stratosphere against version 1.0.4
of the vanilla MapReduce engine that ships with Apache
Hadoop[5], version 0.10.0 of Apache Hive [6]—a declara-
tive language and relational algebra runtime running on top
of Hadoop’s MapReduce, as well as version 0.2 of Apache
Giraph [4]—an open-source implementation of Pregel’s
vertex-centric graph computation model [54] that uses a
Hadoop map-only job for distributed scheduling. This sec-
tion presents the obtained experimental results and highlights
key aspects of the observed system behavior.

8.1 Experimental setup

We ran our experiments on a cluster of 26 machines, using
a dedicated master and 25 slaves connected through a Cisco
2960S switch. Each slave node was equipped with two AMD
Opteron 6128 CPUs (a total of 16 cores running at 2.0 GHz),
32 GB of RAM, and an Intel 82576 gigabit Ethernet adapter.
All evaluated systems run in a Java Virtual Machine (JVM),
making their runtimes and memory consumption easy to
compare. We used 29 GB of operating memory per slave,
leaving 3 GB for the operating system, distributed filesystem
caches, and other JVM memory pools, such as native buffers
for network I/O. Consequently, for each system under test,
the cluster had a total amount of 400 hardware contexts and
an aggregate Java heap of 725 GB.

For all systems, job input and output were stored in a
common HDFS instance using plain ASCII format. Each
datanode was configured to use four SATA drives for data
storage, resulting in approximately 500 MB/s read and write
speed per datanode, and total disk capacity of 80 TB for
the entire HDFS. Each test was run in isolation, since both
Stratosphere and the newer Hadoop versions (based on
YARN) share no resources between queries and realize multi-
tenancy through exclusive resource containers allocated to
each job.

5 Some language compilers can transform functions that return a
sequence of values automatically into an iterator. Java, however, offers
no such mechanism.

In all reported experiments, we range the number of
slaves from 5 to 25. For both MapReduce and Stratosphere,
the configured degree of parallelism (DOP) was 8 parallel
tasks per slave, yielding a total DOP between 40 and 200
tasks, and full CPU utilization for two overlapping data-
parallel phases. To reduce the effect of system noise and
outliers (mostly through lags in the HDFS response time),
we report the median execution time of three job execu-
tions.

8.2 TeraSort

To measure the efficiency of Hadoop’s and Stratosphere’s
execution engines in an isolated way, we performed a simple
experiment comparing the TeraSort job that ships as part of
the example programs package with the two systems. Both
TeraSort implementations are expressed trivially using a pair
of an identity map and reduce UDFs and a custom range-
partitioning function for the shuffle phase. For our experi-
ment, we generated TeraGen input data with scaling factor
(SF) ranging from 10 to 50 for the corresponding DOP from
5 to 25 (a SF of 1 corresponds to 109 bytes). In order to
factor out the impact of file system access and isolate the
sorting operator, we also executed a variant of the TeraSort
job that generates input data on the fly and does not write out
the result. The observed runtimes for both variants (Fig. 10a)
indicate that the distributed sort operators of Stratosphere and
Hadoop have similar performance and scale linearly with the
DOP parameter.

8.3 Word count

In our second experiment, we compared Stratosphere and
Hadoop using a simple “word count” job that counts the
word frequencies and is often used as a standard example for
MapReduce programs. A standard optimization of the naïve
Word Count implementation that we implemented for both
systems is to exploit the algebraic nature of the applied aggre-
gate function and use a combiner UDF in order to reduce the
volume of the shuffled data. As an input, we used synthet-
ically generated text data with words sampled with skewed
frequency from a dictionary with 100000 entries. The dictio-
nary entries and their occurrence frequencies were obtained
by analyzing the Gutenberg English language corpus [59].
As before, a SF of 1 corresponds to 1 GB of plain text
data.

The results are presented in Fig. 10b. As in the previous
experiment, both systems exhibit linear scale-out behavior.
This is not surprising, given that TeraSort and Word Count
have essentially the same second-order task structure con-
sisting of a map, a reduce, and an intermediate data shuf-
fle. In contrast to TeraSort, however, the Word Count job is
approximately 20 % faster in Stratosphere than in Hadoop.

123



A. Alexandrov et al.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Scale-out experiments with DOP ranging from 40 to 200. a TeraSort b Word count c TPCH Q3 d Triangle enumeration e PACT and
Nephele DAGs for Triangle Enumeration f Connected Components

The reasons for that are twofold. First, Stratosphere’s push-
based shuffle enables better pipelined parallelism between
the map and the shuffle operators. The combiner function
is applied “batch-wise” to sorted parts of the mapper’s out-
put, which then are eagerly pushed downstream. In contrast,
Hadoop always writes and sorts the mapper output to disk,
applying the (optional) combiner UDF multiple times during
this process, and serving the constructed sorted data parti-
tions upon request. This approach produces less data when
the cardinality of the grouping key is low, but comes at
the price of fixed costs for a two-phase sort on the sender
side. The second reason for Stratosphere’s superior perfor-
mance is the use of a sort optimization that reduces the
amount of type-specific comparisons at the cost of repli-
cating a key prefix in a binary format that can be com-
pared in a bit-wise fashion [31]. This optimization is espe-
cially useful for keys with complex data types, such as
strings.

We also note that a substantial amount of the processing
time in the Word Count map phase goes into tokenizing the
input text into separate words. An optimized string tokenizer
implementation that works directly with Stratosphere’s string
types and a simplified code page translation (indicated with
a dotted line on Fig. 10b) yields 50 % performance benefit
compared with the version that uses a native JDK StringTo-
kenizer. The same optimization can be done for the Hadoop
implementation and is likely to result in similar performance
improvement.

8.4 Relational query

To evaluate the impact of Stratosphere’s cost-based optimiza-
tion and powerful data flow runtime for the execution of
more complex tasks, we ran a modified version of Query
#3 from the TPC-H benchmark. We omitted the order by and
limit clauses, because the current Stratosphere version has no
implementation of top-k operators. We compare Stratosphere
against Hive—a data warehousing solution that compiles and
executes SQL-like queries as sequences of Hadoop MapRe-
duce jobs.

SELECT l_orderkey,
SUM(l_extendedprice *
(1 - l_discount)),
o_orderdate, o_shippriority

FROM customer c
JOIN orders o ON
(c_custkey = o_custkey)
JOIN lineitem l ON
(l_orderkey = o_orderkey)

WHERE c_mktsegment = ’HOUSEHOLD’
AND o_orderdate < ’1995-03-15’
AND l_shipdate > 1995-03-15’

GROUP BY l_orderkey,
o_orderdate,
o_shippriority

123



Stratosphere platform for big data analytics

The results on Fig. 10c illustrate the benefits of
Stratosphere’s more general approach for specification and
optimization of complex data processing programs. Hive’s
optimizer is bound to the fixed MapReduce execution
pipeline and has to split complex HiveQL expressions
into multiple MapReduce jobs, which introduces unneces-
sary I/O overhead due to the fact that between each map
and reduce phase all the data has to be spilled to disk.
Stratosphere on the other hand can optimize and execute
arbitrary complex jobs as a whole, using the DAG-oriented
program representation described in Sect. 6. For the eval-
uated query, the optimizer makes full use of this, select-
ing hash-based execution strategies for the two join oper-
ators (which are realized using a Match contract) such that
the larger input is always pipelined. As the build sides of
the two Match operators and the input of the reducer han-
dling the “revenue” aggregate computation both fit into mem-
ory, no data are written to disk until the final output is
produced.

8.5 Triangle enumeration

Another example that illustrates the benefits of PACT com-
positionality is the algorithm that enumerates graph triangles,
described by Cohen in [21] as a prerequisite for deeper graph
analysis like identification of dense subgraphs. The algorithm
is formulated in [21] as a sequence of two MapReduce jobs,
where the first reducer is responsible for building all triads
(pairs of connected edges), while the second reducer simu-
lates a join between triads and edges to filter out all triads
that cannot be closed by a matching edge.

In contrast to the cumbersome MapReduce realization pre-
sented above, Stratosphere’s PACT model offers a native way
to express triangle enumeration as an single, simple dataflow
using a map, a reduce, and a match. Moreover, as with the
TPC-H query, Stratosphere’s optimizer compares the cost of
alternative execution strategies and picks a plan that reduces
that cost via pipelining of the data-heavy “triads” path, as
indicated in Fig. 10e. Such an optimization can have substan-
tial impact on the execution time, as the output of the “build
triads” operator is asymptotically quadratic in the number of
edges.

Figure 10d shows the results of an experiment enumerat-
ing all triangles of a symmetric version of the Pokec social
network graph [62]. The results highlight the benefit of the
pipelined execution strategy compared with a naïve Hadoop
implementation that uses two MapReduce jobs and mate-
rializes the intermediate results after each step. For small
degrees of parallelism, the difference is close to an order
of magnitude. Due to the skewed vertex degree distribu-
tion, increasing the DOP does not have an impact for the
pipelined Stratosphere version, whereas Hadoop benefits
from the reduced read and write times for result material-

ization. However, this effect wears off for DOP > 160 and
can be dampened further through the use of a better schedul-
ing policy that takes into account the data skew.

8.6 Connected components

In our next experiment, we used Giraph—an open-source
implementation of Pregel [54]—as a reference point for the
evaluation of Stratosphere’s iterative dataflow constructs. For
our experiments, we ran the connected components algorithm
proposed by Kang et al. in [49] on the crawled Twitter graph
used by Cha et al. in [17], using DOP from 80 to 200.

Figure 10f displays the observed execution times. For low
node counts, Giraph currently offers twice the performance
compared with Stratosphere. We attribute this mostly to a bet-
ter tuned implementation, since both approaches essentially
are based on the same execution model—the bulk synchro-
nous iterations presented in Sect. 5.3. However, while the
benefits of scaling out are clear in Stratosphere, increasing
the DOP for Giraph has hardly any performance gains. Fur-
ther analysis of the execution time of each superstep in the
two systems revealed that although the time required to exe-
cute the first supersteps drops for higher DOP values, the
latter supersteps actually take more time to finish (Fig. 11a,
b). For Giraph, this effect is stronger, and the total sum of all
supersteps cancels out the improvement of the early stages.
We attribute this behavior to inefficiencies in the implemen-
tation of Giraph’s worker node communication model. We
also note that the linear scale-out behavior in both systems
is dampened by the skew in the vertex distribution across
the graph nodes, and further scale-out will ultimately be pro-
hibited as the data-partitioning approach used for parallel
execution will not be able to handle the skew in the input
data and the associated computations.

8.7 Fault tolerance

In this section, we give preliminary results on the overhead
and efficiency of the ephemeral checkpointing and recovery
mechanism as briefly described in Sect. 7.2. The numbers
are based on the experiments of a previous publication [39].
We used the “Triangle Enumeration” program (including
the preprocessing steps originally suggested by Cohen [21])
and a variant of the “Relational Query” (with only one join
between the “Lineitem” and “Orders” tables). For each pro-
gram, we measured the failure-free runtime both with and
without checkpointing, as well as the total runtime including
recovery after a failure. For both programs, the failure occurs
in the join operator after roughly 50 % of the failure-free run-
time. For the relational query, the fault-tolerance mechanism
checkpoints the results before the join (the filtered and pro-
jected tables), and for the triangle enumeration, it saves both
the data before the candidate-creating reducer (which inflates

123



A. Alexandrov et al.

(a) (b)

Fig. 11 Execution time per superstep of the Connected Components fixpoint algorithm. a CC Supersteps (Giraph) b CC Supersteps (Stratosphere)

Table 2 Runtime (secs) of jobs in the fault tolerance experiments

Experiment Rel. query Triangle enum.

Failure free (no checkp.) 1,026 646

Failure free (w/ checkp.) 1,039 678

Checkpointing Overhead 1.2 % 5 %

Failure & recovery 1,131 747

the data volume) and after the data-reducing join operator.
The experiments were run on 8 machines with 4 cores each
and 16 GB RAM each, which is enough to keep checkpoints
entirely in main memory (Table 2).

We observe that the checkpointing itself adds very little
overhead, because it simply keeps a copy of the buffers in
memory. The mechanism of ephemeral checkpoints selec-
tively materializes small intermediate results, keeping the
required memory small compared with the size of data sets
and certain intermediate results. For both jobs, the runtime
with a failure is only moderately higher than the failure-free
runtime. In the case of the relational query, a big part of the
execution time is spent in scanning, filtering, and projecting
the inputs. Because the result is checkpointed, these costly
operations are not repeated as part of the recovery. In the
case of the triangle enumeration program, the join operator
repeats its work. It can, however, skip shipping roughly the
first half of its result data to the sinks, thereby avoiding a
good part of the result writing costs.

8.8 Conclusions

The results in this section indicate that Stratosphere offers
comparable or better performance against alternative open-
source systems that provide general-purpose (Hadoop, Hive)

or domain-specific (Giraph) functionality. Most of the gain
can be attributed to execution layer features (e.g., eager push
communication, different PACT implementations) and the
ability of Stratosphere’s optimizer to consider these features
during plan enumeration in a cost-based manner. In contrast,
most of the other open-source systems make hard-coded deci-
sions and fix some of the physical aspects in the used execu-
tion plans, which may cause inefficiencies depending on the
size and the distributions of the input data.

9 Ongoing work

We are currently working on several research and develop-
ment threads in the context of Stratosphere. In this section, we
describe work that is currently ongoing, deferring a broader
research outlook until Sect. 11.

A major direction of our work pertains to query optimiza-
tion. First, we are currently working on consolidating and
unifying the PACT and Sopremo layers of Stratosphere into
a single operator model that includes operators with known
semantics as well as user-defined functions. Our goal was
to arrive at an one-pass optimizer that considers operator
reordering and parallelization transformations in the same
pass. The optimizer will fall back to static code analysis tech-
niques (an extension of the current prototypical techniques)
only when operator semantics are not known. The optimizer
will provide pay-as-you-go implementation and optimiza-
tion of new, domain-specific operators, enabling developers
to rapidly add new operators, i. e., by implementing basic
algorithms, which can be extended and improved over time.
Second, we are designing a module that injects monitoring

123



Stratosphere platform for big data analytics

operators in the plan that collect runtime statistics and report
to a metadata store to use during optimization. Third, we are
working on refining the cost model of the optimizer toward
supporting the goal of robustness, in particular, finding plans
that are optimized for a variance in addition to an expected
cost metric. Fourth, we are working toward adapting plans at
runtime, as uncertainty about the intermediate result sizes and
the characteristics of the execution environment (especially
in the cloud setting) can quickly render static optimization
decisions meaningless.

A second major direction is related to strengthening the
system’s fault-tolerant execution capabilities. We are work-
ing on an adaptive algorithm that selectively picks which
intermediate results to materialize, taking into account fail-
ure probabilities, the execution graph structure, the size of
the task results, the cost of the tasks, measured and adapted
at runtime.

Iterative jobs present novel opportunities for handling
their fault-tolerant execution. We are currently investigating
to which extent algorithmic compensation techniques can
alleviate the need for checkpointing intermediary algorithm
state to stable storage (e.g., by exploiting the robust nature of
fixed point algorithms commonly used in data mining). By
this, we intend to enable novel optimistic approaches to fault
tolerance in distributed iterative data processing.

A third direction relates to the scalability and efficiency
of the Nephele execution engine through connection multi-
plexing, application-level flow control, multicasting support,
and selective pipeline breaking to avoid deadlocks or reduce
stalls caused by head-of-the-line waiting effects. In addition,
we are working on better memory management during data
shuffling in very large clusters.

Finally, we are experimenting with porting additional
high-level query or scripting languages on top of the
Stratosphere query processor. We have, in initial stages, a
prototype of Pig [48], and a Scala dialect of the PACT pro-
gramming model [36].

10 Related work

10.1 End-to-end big data systems

There are currently a few systems under development in
academia and industry that seek to advance the state of the
art in distributed data management. The Hadoop ecosystem
(including higher-level languages such as Hive, Pig, libraries
such as Mahout and other tooling) is the most popular. Com-
pared with Hadoop, Stratosphere offers more efficient execu-
tion and more sophisticated optimization due to the extended
set of primitives. In addition, the PACT model encourages
more modular code and component reuse [2]. The Hadoop
ecosystem does not currently support DAG-structured plans

or iterative jobs and is therefore very inefficient in use cases
that require or benefit from those.

Asterix [12] is a research effort by several campuses at the
University of California. Like Stratosphere, Asterix offers
a complete stack including a higher-level language AQL,
a query optimizer, and a distributed runtime system [15].
While both Stratosphere and Asterix aim at bridging the gap
between MapReduce and parallel DBMSs, they start at the
opposite ends of the spectrum (and often meet in the mid-
dle). Asterix starts with a semi-structured data model and
language, while Stratosphere follows a UDF-centric model.
Asterix includes data storage based on LSM-trees, paying the
price of a data loading phase for efficient execution, while
Stratosphere connects to external data sources (e. g., HDFS),
converting data to optimized binary representations only after
the initial scans. Nevertheless, we have arrived at similar
lessons with the Asterix team in several aspects pertaining
the development of distributed data management systems.

Scope [74] is a system used by Microsoft Bing for sev-
eral analytic tasks.6 Scope integrates with Microsoft’s LINQ
interface, allowing the specification of rich UDFs simi-
lar to Stratosphere. It features a sophisticated query opti-
mizer [16,61,73] and runtime system based on a rewrite of
Dryad [44,72]. Scope is perhaps the system most similar to
Stratosphere, perhaps aiming at scalability more than effi-
ciency. To the best of our knowledge, Scope does not effi-
ciently support incrementally iterative queries.

The Spark [70] system from UC Berkeley is a distributed
system that operates on memory-resident data. Spark pro-
vides functionality equivalent to Stratosphere’s bulk itera-
tions, but not incremental iterations. In addition, while Spark
is a system that processes batches of data, Stratosphere fea-
tures an execution engine that pipelines data. Pipelining is
better suited to use cases that incrementally process data as
found in many machine learning applications.

10.2 Query languages and models for parallel data
management

It is conceptually easy to parallelize the basic operators
of relational algebra, and parallel analytical databases have
existed for decades. The MapReduce paradigm widens the
scope of parallel programs to include more generalized user-
define aggregation functions [22]. Our PACT model is a
generalization of MapReduce that in addition enables the
parallelization of generalized joins. MapReduce has been
the compilation target of SQL subsets [19,64], as well as
other languages inspired by scripting languages [57,58] or
XQuery [13]. The Meteor language borrows its syntax from
Jaql [13]. Stratosphere is a better compilation target for the

6 At the time of writing, Scope is not offered as a product or service by
Microsoft.

123



A. Alexandrov et al.

aforementioned languages than MapReduce, as the system’s
optimizer can be reused, and a richer set of primitives is avail-
able as the compilation target language. While these query
languages are based on the relational or a semi-structured
model, other efforts [1,18] aim to embed domain-specific
languages in functional general programming languages. An
integration of a functional language with Stratosphere con-
stitutes a major part of our future work.

10.3 Query optimization

Query optimization is one of the most researched topics in the
context of data management. While the physical optimiza-
tion as described in Sect. 6.3 is closely related to traditional
optimization of relational queries as, for example, in refer-
ences [33,60], the rewriting of data flows consisting of user-
defined operators has gained more interest recently. Similar
to our approach, Microsoft’s Scope compiler leverages infor-
mation derived by static code analysis to reason about the
preservation of interesting physical data properties [35,71].
Manimal [45] applies static code analysis on Hadoop map
and reduce UDFs. In contrast to our work, operators are not
reordered but map functions that include filter conditions are
modified in order to access an index instead of performing a
full scan of the input file. Stubby [52] optimizes workflows
consisting of multiple MapReduce jobs by merging consec-
utive map and reduce operators to reduce the overhead of
running multiple MapReduce jobs. Stubby gains the infor-
mation for its optimizations from manual code annotations.

10.4 Distributed dataflow execution

While the principles behind parallel databases have been
known since the 80s [23,28] and industrial-strength paral-
lel databases have existed for as long [63], the last decade
brought a new wave of “massively parallel” relational query
processors [7,34] as well as truly scalable implementations of
more restricted models, notable MapReduce [22]. Nephele is
a scalable implementation of the DAG dataflow model, sim-
ilar to Microsoft’s Dryad [44]. A different approach is fol-
lowed in the Asterix project, where the Hyracks engine [15]
executes physical operators (e. g., physical join implemen-
tations) rather than user-defined functions wrapped in glue
code that parallelizes execution. All these projects aim to
scale query processing to clusters of 100s or even 1000s and
beyond nodes.

10.5 Distributed iterative algorithms

Over the last years, a number of stand-alone graph process-
ing systems or approaches to integrate iterative process-
ing in dataflow engines have been proposed. Spark [70]
handles state as resilient distributed data sets and provides

constructs for efficiently executing iterative data flows that
recompute the state as a whole. GraphLab [53] is a special-
ized framework for parallel machine learning, where pro-
grams model a graph expressing the computational depen-
dencies of the input. Programs are expressed as update
functions on vertices, which can read neighboring vertices’
state through a shared memory abstraction. Furthermore,
GraphLab provides configurable consistency levels and asyn-
chronous scheduling of the updates. Pregel [54] is a graph
processing adoption of bulk synchronous parallel processing
[65]. Programs directly model a graph, where vertices hold
state and send messages to other vertices along the edges.
By receiving messages, vertices update their state. Rex [56]
is a parallel shared-nothing query processing platform that
provides programmable deltas for expressing incrementally
iterative computations. Naiad [55] unifies incrementally iter-
ative computations with continuous data ingestion into a new
technique called differential computation. In this approach,
intermediate results from different iterations and ingestion
periods are represented as partially ordered deltas, and final
results are reconstructed lazily using computationally effi-
cient combinations of their lineage deltas.

11 Conclusions and research outlook

We presented Stratosphere, a deep software stack for ana-
lyzing Big Data. Stratosphere features a high-level script-
ing language, Meteor, which focuses on providing extensi-
bility. Using Meteor and the underlying Sopremo operator
model, domain-specific experts can extend the system’s func-
tionality with new operators, in addition to operator pack-
ages for data warehousing, information extraction, and infor-
mation integration already provided. Stratosphere features
an intermediate UDF-centric programming model based on
second-order functions and higher-order abstractions for iter-
ative queries. These programs are optimized using a cost-
based optimizer inspired by relational databases and adapted
to a schema-less and UDF-heavy programming and data
model. Finally, Nephele, Stratosphere’s distributed execution
engine provides scalable execution, scheduling, network data
transfers, and fault tolerance. Stratosphere occupies a sweet
spot between MapReduce and relational databases. It offers
declarative program specification; it covers a wide variety of
data analysis tasks including iterative or recursive tasks; it
operates directly on distributed file systems without requir-
ing data loading; and it offers scalable execution on large
clusters and in the cloud.

The lessons learned while building Stratosphere have
opened several directions for research. First, we see a lot
of potential in the design, compilation, and optimization
of high-level declarative languages for various analytical
domains, in particular machine learning. There, it is chal-

123



Stratosphere platform for big data analytics

lenging to divide the labor between the language compiler,
database optimizer, and runtime system, and define the right
abstractions between these components. Second, we believe
that distributed data management systems should be efficient
in addition to scalable and thus should adapt their algo-
rithms and architecture to the ever-evolving landscape of
hardware, including multi-core processors, NUMA architec-
tures, co-processors, such as GPUs and FPGAs, flash and
phase-change memory, as well as data center networking
infrastructure.

Finally, we see our next major research thread revolving
around use cases that move beyond batch data processing
and require fast data ingestion and low-latency data analysis.
Such systems, in order to provide rich functionality, must
effectively manage mutable state, manifested in the form
of stateful user-defined operators operating on data streams,
or in the context of incremental iterative algorithms. Such
state must be embedded in a declarative language via proper
abstractions and efficiently managed by the system. In addi-
tion, workloads of (long-running) programs need to be opti-
mized together.

Acknowledgments We would like to thank the Master students that
worked on the Stratosphere project and implemented many compo-
nents of the system: Thomas Bodner, Christoph Brücke, Erik Nijkamp,
Max Heimel, Moritz Kaufmann, Aljoscha Krettek, Matthias Ringwald,
Tommy Neubert, Fabian Tschirschnitz, Tobias Heintz, Erik Diessler,
Thomas Stolltmann.

References

1. Ackermann, S., Jovanovic, V., Rompf, T., Odersky, M.: Jet: an
embedded dsl for high performance big data processing. In: Big-
Data Workshop at VLDB (2012)

2. Alexandrov, A., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl,
V., Nijkamp, E., Warneke, D.: Mapreduce and pact - comparing
data parallel programming models. In: BTW, pp. 25–44 (2011)

3. Alexandrov, A., Battré, D., Ewen, S., Heimel, M., Hueske, F., Kao,
O., Markl, V., Nijkamp, E., Warneke, D.: Massively parallel data
analysis with pacts on nephele. PVLDB 3(2), 1625–1628 (2010)

4. Apache Giraph. http://incubator.apache.org/giraph/
5. Apache Hadoop. http://hadoop.apache.org/
6. Apache Hive. http://sortbenchmark.org/
7. Aster Data. http://www.asterdata.com/
8. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.:

Nephele/pacts: a programming model and execution framework for
web-scale analytical processing. In: SoCC, pp. 119–130 (2010)

9. Battré, D., Frejnik, N., Goel, S., Kao, O., Warneke, D.: Evaluation
of network topology inference in opaque compute clouds through
end-to-end measurements. In: IEEE CLOUD, pp. 17–24 (2011)

10. Battré, D., Frejnik, N., Goel, S., Kao, O., Warneke, D.: Infer-
ring network topologies in infrastructure as a service cloud. In:
CCGRID, pp. 604–605 (2011)

11. Battré, D., Hovestadt, M., Lohrmann, B., Stanik, A., Warneke, D.:
Detecting bottlenecks in parallel dag-based data flow programs. In:
MTAGS (2010)

12. Behm, A., Borkar, V.R., Carey, M.J., Grover, R., Li, C., Onose,
N., Vernica, R., Deutsch, A., Papakonstantinou, Y., Tsotras, V.J.:
Asterix: towards a scalable, semistructured data platform for

evolving-world models. Distrib. Parallel Databases 29(3), 185–216
(2011)

13. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh,
M.Y., Kanne, C.C., Özcan, F., Shekita, E.J.: Jaql: a scripting lan-
guage for large scale semistructured data analysis. PVLDB 4(12),
1272–1283 (2011)

14. Boden, C., Karnstedt, M., Fernandez, M., Markl, V.: Large-scale
social media analytics on stratosphere. In: WWW (2013)

15. Borkar, V.R., Carey, M.J., Grover, R., Onose, N., Vernica, R.:
Hyracks: a flexible and extensible foundation for data-intensive
computing. In: ICDE, pp. 1151–1162 (2011)

16. Bruno, N., Agarwal, S., Kandula, S., Shi, B., Wu, M.C., Zhou, J.:
Recurring job optimization in scope. In: SIGMOD Conference, pp.
805–806 (2012)

17. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring
user influence in twitter: the million follower fallacy. In: ICWSM
(2010)

18. Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanra-
han, P., Odersky, M., Olukotun, K.: Language virtualization for het-
erogeneous parallel computing. In: OOPSLA, pp. 835–847 (2010)

19. Chattopadhyay, B., Lin, L., Liu, W., Mittal, S., Aragonda, P.,
Lychagina, V., Kwon, Y., Wong, M.: Tenzing a sql implementation
on the mapreduce framework. PVLDB 4(12), 1318–1327 (2011)

20. Chaudhuri, S., Shim, K.: Including group-by in query optimization.
In: VLDB, pp. 354–366 (1994)

21. Cohen, J.: Graph twiddling in a mapreduce world. Comput. Sci.
Eng. 11(4), 29–41 (2009)

22. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on
large clusters. In: OSDI, pp. 137–150 (2004)

23. DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar,
K.B., Muralikrishna, M.: Gamma—a high performance dataflow
database machine. In: VLDB, pp. 228–237 (1986)

24. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey
of rollback-recovery protocols in message-passing systems. ACM
Comput. Surv. 34(3), 375–408 (2002)

25. Ewen, S., Schelter, S., Tzoumas, K., Warneke, D., Markl, V.: Iter-
ative parallel data processing with stratosphere: an inside look. In:
SIGMOD (2013)

26. Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast
iterative data flows. PVLDB 5(11), 1268–1279 (2012)

27. Fegaras, L., Li, C., Gupta, U.: An optimization framework for map-
reduce queries. In: EDBT, pp. 26–37 (2012)

28. Fushimi, S., Kitsuregawa, M., Tanaka, H.: An overview of the sys-
tem software of a parallel relational database machine grace. In:
VLDB, pp. 209–219 (1986)

29. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system.
In: SOSP, pp. 29–43 (2003)

30. Graefe, G., Bunker, R., Cooper, S.: Hash joins and hash teams in
microsoft sql server. In: VLDB, pp. 86–97 (1998)

31. Graefe, G.: Implementing sorting in database systems. ACM Com-
put. Surv. 38(3), Article ID 10 (2006)

32. Graefe, G.: Parallel query execution algorithms. In: Encyclopedia
of Database Systems, pp. 2030–2035 (2009)

33. Graefe, G.: Volcano—an extensible and parallel query evaluation
system. IEEE Trans. Knowl. Data Eng. 6(1), 120–135 (1994)

34. Greenplum. http://www.greenplum.com/
35. Guo, Z., Fan, X., Chen, R., Zhang, J., Zhou, H., McDirmid, S.,

Liu, C., Lin, W., Zhou, J., Zhou, L.: Spotting code optimizations in
data-parallel pipelines through periscope. In: OSDI, pp. 121–133
(2012)

36. Harjung, J.J.: Reducing formal noise in pact programs. Master’s
thesis, Technische Universität Berlin, Faculty of EECS (2013)

37. Heise, A., Rheinländer, A., Leich, M., Leser, U., Naumann, F.:
Meteor/sopremo: an extensible query language and operator model.
In: BigData Workshop at VLDB (2012)

123

http://incubator.apache.org/giraph/
http://hadoop.apache.org/
http://sortbenchmark.org/
http://www.asterdata.com/
http://www.greenplum.com/


A. Alexandrov et al.

38. Heise, A., Naumann, F.: Integrating open government data with
stratosphere for more transparency. Web Semant.: Sci. Serv. Agents
World Wide Web 14, 45–56 (2012)

39. Höger, M., Kao, O., Richter, P., Warneke, D.: Ephemeral material-
ization points in stratosphere data management on the cloud. Adv.
Parallel Comput. 23, 163–181 (2013)

40. Hovestadt, M., Kao, O., Kliem, A., Warneke, D.: Evaluating adap-
tive compression to mitigate the effects of shared i/o in clouds. In:
IPDPS Workshops, pp. 1042–1051 (2011)

41. Hueske, F., Krettek, A., Tzoumas, K.: Enabling operator reorder-
ing in data flow programs through static code analysis. CoRR
abs/1301.4200 (2013)

42. Hueske, F., Peters, M., Krettek, A., Ringwald, M., Tzoumas, K.,
Markl, V., Freytag, J.C.: Peeking into the optimization of data flow
programs with mapreduce-style udfs. In: ICDE (2013)

43. Hueske, F., Peters, M., Sax, M., Rheinländer, A., Bergmann, R.,
Krettek, A., Tzoumas, K.: Opening the black boxes in data flow
optimization. PVLDB 5(11), 1256–1267 (2012)

44. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: dis-
tributed data-parallel programs from sequential building blocks. In:
EuroSys, pp. 59–72 (2007)

45. Jahani, E., Cafarella, M.J., Ré, C.: Automatic optimization for
mapreduce programs. PVLDB 4(6), 385–396 (2011)

46. Java HotSpot VM Whitepaper. http://www.oracle.com/
technetwork/java/whitepaper-135217.html

47. JavaScript Object Notation. http://json.org/
48. Kalavri, V.: Integrating pig and stratosphere. Master’s thesis, KTH,

School of Information and Communication Technology (ICT)
(2012)

49. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: a peta-scale
graph mining system. In: ICDM, pp. 229–238 (2009)

50. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency
control. ACM Trans. Database Syst. 6(2), 213–226 (1981)

51. Leich, M., Adamek, J., Schubotz, M., Heise, A., Rheinländer, A.,
Markl, V.: Applying stratosphere for big data analytics. In: BTW,
pp. 507–510 (2013)

52. Lim, H., Herodotou, H., Babu, S.: Stubby: a transformation-based
optimizer for mapreduce workflows. PVLDB 5(11), 1196–1207
(2012)

53. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Heller-
stein, J.M.: Distributed graphlab: a framework for machine learning
in the cloud. PVLDB 5(8), 716–727 (2012)

54. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I.,
Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph
processing. In: SIGMOD Conference, pp. 135–146 (2010)

55. McSherry, F., Murray, D., Isaacs, R., Isard, M.: Differential
dataflow. In: CIDR (2013)

56. Mihaylov, S.R., Ives, Z.G., Guha, S.: Rex: recursive, delta-based
data-centric computation. PVLDB 5(11), 1280–1291 (2012)

57. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig
latin: a not-so-foreign language for data processing. In: SIGMOD
Conference, pp. 1099–1110 (2008)

58. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the
data: parallel analysis with sawzall. Sci. Program. 13(4), 277–298
(2005)

59. Project Gutenberg. http://www.gutenberg.org/
60. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,

Price, T.G.: Access path selection in a relational database manage-
ment system. In: SIGMOD Conference, pp. 23–34 (1979)

61. Silva, Y.N., Larson, P.A., Zhou, J.: Exploiting common subexpres-
sions for cloud query processing. In: ICDE, pp. 1337–1348 (2012)

62. Stanford Network Analysis Project. http://snap.stanford.edu/
63. Teradata. http://www.teradata.com/
64. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony,

S., Liu, H., Wyckoff, P., Murthy, R.: Hive—a warehousing solution
over a map-reduce framework. PVLDB 2(2), 1626–1629 (2009)

65. Valiant, L.G.: A bridging model for parallel computation. Com-
mun. ACM 33(8), 103–111 (1990)

66. Wang, Y.M., Fuchs, W.K.: Lazy checkpoint coordination for
bounding rollback propagation. In: Reliable Distributed Systems,
1993. Proceedings., 12th Symposium on, pp. 78–85 (1993)

67. Warneke, D., Kao, O.: Nephele: efficient parallel data processing
in the cloud. In: SC-MTAGS (2009)

68. Warneke, D., Kao, O.: Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud. IEEE Trans. Parallel
Distrib. Syst. 22(6), 985–997 (2011)

69. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda,
P.K., Currey, J.: Dryadlinq: a system for general-purpose dis-
tributed data-parallel computing using a high-level language. In:
OSDI, pp. 1–14 (2008)

70. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster com-
puting. In: NSDI (2012)

71. Zhang, J., Zhou, H., Chen, R., Fan, X., Guo, Z., Lin, H., Li, J.Y.,
Lin, W., Zhou, J., Zhou, L.: Optimizing data shuffling in data-
parallel computation by understanding user-defined functions. In:
NSDI (2012)

72. Zhou, J., Bruno, N., Lin, W.: Advanced partitioning techniques for
massively distributed computation. In: SIGMOD Conference, pp.
13–24 (2012)

73. Zhou, J., Larson, P.Å., Chaiken, R.: Incorporating partitioning and
parallel plans into the scope optimizer. In: ICDE, pp. 1060–1071
(2010)

74. Zhou, J., Bruno, N., Wu, M.C., Larson, P.Å., Chaiken, R., Shakib,
D.: Scope: parallel databases meet mapreduce. VLDB J. 21(5),
611–636 (2012)

123

http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://json.org/
http://www.gutenberg.org/
http://snap.stanford.edu/
http://www.teradata.com/

	The Stratosphere platform for big data analytics
	Abstract 
	1 Introduction
	2 System architecture
	3 Stratosphere by Meteor examples
	3.1 Structured data analysis
	3.2 Queries with domain-specific operators

	4 Extensibility in Stratosphere's operator model
	5 Model for parallel programming
	5.1 Data model
	5.2 PACT operators and acyclic PACT programs
	5.3 Iterative PACT programs

	6 Optimization in Stratosphere
	6.1 Optimizer overview
	6.2 Operator reordering
	6.3 Physical optimization

	7 Parallel dataflow execution
	7.1 Tasks, channels, and scheduling
	7.2 Fault tolerance
	7.3 Runtime operators

	8 Experimental evaluation
	8.1 Experimental setup
	8.2 TeraSort
	8.3 Word count
	8.4 Relational query
	8.5 Triangle enumeration
	8.6 Connected components
	8.7 Fault tolerance
	8.8 Conclusions

	9 Ongoing work
	10 Related work
	10.1 End-to-end big data systems
	10.2 Query languages and models for parallel data management
	10.3 Query optimization
	10.4 Distributed dataflow execution
	10.5 Distributed iterative algorithms

	11 Conclusions and research outlook
	Acknowledgments
	References


