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ABSTRACT

The efficient, distributed factorization of large matrices on clusters
of commodity machines is crucial to applying latent factor models
in industrial-scale recommender systems. We propose an efficient,
data-parallel low-rank matrix factorization with Alternating Least
Squares which uses a series of broadcast-joins that can be efficiently
executed with MapReduce.

We empirically show that the performance of our solution is
suitable for real-world use cases. We present experiments on two
publicly available datasets and on a synthetic dataset termed Bigflix,
generated from the Netflix dataset. Bigflix contains 25 million users
and more than 5 billion ratings, mimicking data sizes recently re-
ported as Netflix’ production workload. We demonstrate that our ap-
proach is able to run an iteration of Alternating Least Squares in six
minutes on this dataset. Our implementation has been contributed
to the open source machine learning library Apache Mahout.
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1. INTRODUCTION
Today’s information overload has triggered the development of

recommender systems: intelligent filters that learn about the users’
preferences and find the information most relevant to them.

On the technical side, the processing efficiency and scalability of
the systems becomes a major concern in light of rapidly growing
data sizes [2]. In a production environment, the offline computations
necessary to run a recommender system must be periodically exe-
cuted as part of larger analytical workflows and thus have to adhere
to strict time and resource constraints. Additionally, computations
must be executed repeatedly and in parallel to find good model
parameters via cross-validation. For economic and operational rea-
sons it is often undesirable to execute such offline computations on
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a single machine: this machine might fail and with growing data
sizes, constant hardware upgrades might be necessary to improve
the machine’s performance to meet the time constraints. Due to
these disadvantages, a single machine solution can quickly become
expensive and hard to operate. Running data-intensive, analytical
computations in a parallel and fault-tolerant manner on a cluster of
commodity machines [9, 14] poses a solution to this problem. The
computation becomes independent of single machine failures and
performance can be increased by simply adding more machines to
the cluster.

In recent research, we showed how to efficiently apply neighbor-
hood methods in such a scenario [18]. When we apply advanced
techniques such as latent factor models [13] in a distributed manner,
we face a problematic situation: The algorithms used to solve latent
factor models are of iterative nature. The execution of iterative pro-
grams imposes serious overhead when carried out with established
paradigms such as MapReduce [9, 14], where every iteration is
scheduled as a separate job and has to re-scan all iteration-invariant
data. Although recently proposed specialized systems [15, 22] pro-
vide superior performance for iterative algorithms, they have the
drawback that they are difficult to employ in production settings,
where the existing analytics infrastructure is very often built on
top of the open source MapReduce implementation Hadoop [3]
and its ecosystem. Integrating specialized systems into such an
environment requires heterogeneous analytics pipelines where e.g.
preprocessing is done by a MapReduce system and model training is
conducted by a specialized machine learning system. Such pipelines
are undesirable because they are complex to setup and have high
maintenance cost [14].

In this paper, we show that the low-rank matrix factorization of
commonly used datasets in recommendation mining is a corner case
that can be efficiently computed with MapReduce although the un-
derlying computation is iterative. The performance of our proposed
solution is suitable for production settings and at the same time, our
approach is easy to integrate into existing analytics infrastructures,
as it runs on Hadoop. We describe how to execute the underlying
computation using only a series of broadcast-joins [7], which are
efficiently executable in MapReduce and avoid a lot of the common
drawbacks of the Hadoop framework.

For evaluation, we conduct experiments on two publicly available
datasets consisting of several hundred million movie and song rat-
ings. To test our approach on industrial-scale, we run experiments
on a synthetic dataset with 25 million users and more than 5 bil-
lion ratings, mimicking real-world data sizes recently reported by
Netflix [2].

The contributions of this paper are the following: (1) We show
how to efficiently execute an iterative low-rank matrix factorization
algorithm with MapReduce in a scalable manner. (2) We provide



an experimental evaluation on two real-world datasets and on a
synthetic industrial-scale dataset with more than 5 billion ratings.

The rest of the paper is organized as follows. Section 2 briefly
introduces MapReduce and latent factor models. Section 3 in de-
tail discusses our proposed approach. Section 4 describes related
work. Section 5 gives the results we obtain from our experimental
evaluation, whereas Section 6 concludes and discusses future work.

2. PRELIMINARIES

2.1 MapReduce and its limitations
MapReduce [9] is a functional paradigm for data-intensive par-

allel processing on shared-nothing clusters running a distributed
filesystem (DFS). Under this paradigm, the user has to express algo-
rithms as first-order functions supplied to the second-order functions
map and reduce. The framework then automatically parallelizes the
program and takes care of details such as scheduling the program’s
execution on the cluster, managing the inter-machine communica-
tion as well as coping with machine failures. Hadoop [3] is a popular
and widely deployed open source implementation of MapReduce. In
Hadoop, jobs are executed as a pipeline map-shuffle-reduce, where
the map function is invoked on the input data in the DFS in parallel,
the output tuples are grouped by their key and then sent to the re-
ducer machines in the shuffle phase. The receiving machines merge
the tuples, invoke the reduce function on all tuples sharing the same
key and finally write the output to the DFS . The shuffle phase is
typically the most costly operation as the mappers‘ output is spilled
to disk at first and each reducer downloads its assigned data from
every mapper afterwards.

In general, such a framework is a poor fit for iterative algorithms,
as each iteration has to be scheduled as a single MapReduce job
with a high startup cost (potentially up to tens of seconds). Further,
the system creates a lot of unnecessary I/O and network traffic as
all static, iteration-invariant data has to be re-read from disk and
re-processed during each iteration and the intermediary result of
each iteration has to be materialized in the DFS.

2.2 Collaborative Filtering
Collaborative Filtering (CF) is a popular approach in recom-

mender systems which analyzes the historical interactions between
a user and an arbitrary kind of item. Based on patterns found in
the historical data, a CF algorithm recommends new, potentially
high-preferred items to the users. Let A be a |C| × |P | matrix
holding all known interactions between a set of users C and a set
of items P . If a user i interacted with an item j, then aij holds a
numeric value representing the strength of the interaction.

During the much-noticed Netflix prize [6], “latent factor models”,
approaches to CF that leverage a low-rank matrix factorization of
the interaction data, became very popular [13]. The idea is to
approximately factor the sparse |C| × |P | matrix A into the product
of two rank r feature matrices U and M such that A ≈ UM . The
|C| × r matrix U models the latent features of the users, (the rows
of A), while the r × |P | matrix M models the latent features of
the items (the columns of A). A prediction for the strength of
the relation between a user and an item (e.g., the preference of a
user towards a movie) is given by the dot product u⊤

i mj of the
vectors for user i and item j in the low-dimensional feature space.
A popular technique to compute such a factorization is Stochastic
Gradient Descent (SGD) [11,13,20], which randomly loops through
all observed interactions aij , computes the error of the prediction
u⊤

i mj for each interaction and modifies the model parameters in the
opposite direction of the gradient. Another technique is Alternating
Least Squares (ALS) [12, 23], which repeatedly keeps one of the

unknown matrices (either U or M ) fixed, so that the other one can
be optimally re-computed. ALS then rotates between re-computing
the rows of U in one step and the columns of M in the subsequent
step. Note that such alternating convex optimization techniques can
also be applied to CF approaches that learn a ranking function [21].

3. APPROACH

3.1 Parallelization
For single machine implementations, SGD is the preferred tech-

nique to compute a low-rank matrix factorization [4, 10]. SGD is
easy to implement and computationally less expensive than ALS,
where every iteration runs in O((|C| + |P |) ∗ r3), as |C| + |P |
linear systems have to be solved. Unfortunately, SGD is inherently
sequential, because it updates the model parameters after each pro-
cessed interaction. Techniques for parallel SGD have been proposed,
yet they are either hard to implement, exhibit slow convergence or
require shared-memory [11, 16, 20].

Following this rationale, we chose ALS for our parallel implemen-
tation. Although it is computationally more expensive than SGD,
it naturally amends itself to parallelization. When we re-compute
the user feature matrix U for example, ui, the i-th row of U , can
be re-computed by solving a least squares problem only including
ai, the i-th row of A, which holds user i’s interactions, and all
the columns mj of M that correspond to non-zero entries in ai.
This re-computation of ui is independent from the re-computation
of all other rows of U and therefore, the re-computation of U is
easy to parallelize if we manage to guarantee efficient data access
to the rows of A and the corresponding columns from M . In the
following we refer to the sequence of re-computing of U followed
by re-computing M as a single iteration in ALS.

From a data processing perspective, this means that we have to
conduct a parallel join between the interaction data A and M (the
item features) in order to re-compute the rows of U . Analogously,
we have to conduct a parallel join between A and U (the user
features) to re-compute M . Finding an efficient execution strategy
for these joins is crucial to the performance of our proposed parallel
solution.

3.2 Execution with MapReduce
When executing joins in a shared-nothing environment, minimiz-

ing the required amount of inter-machine communication is decisive
for the performance of the execution, as network bandwidth is the
most scarce resource in a cluster. For matrix factorization with ALS,
we have to alternatingly join A with M and U . In both cases, the
interaction matrix A is usually much larger than any of the feature
matrices. We limit our approach to use-cases where neither U nor
M need to be partitioned (which means they individually fit into
the memory of a single machine of the cluster). A rough estimate
of the required memory for the re-computation steps in ALS is
max(|C|, |P |) ∗ r ∗ 8 byte, as alternatingly, a single dense double-
precision representation of the matrices U or M has to be stored
in memory on each machine. Even for 10 million users or items
and a rank of 100, the estimated required memory would be less
than 8 gigabyte, which can easily be handled by today’s commodity
hardware. Our experiments in Section 5 show that, despite this
limitation, we can handle datasets with billions of data points.

In such a setting, an efficient way to implement the necessary
joins for ALS in MapReduce is to use a parallel broadcast-join [7].
The smaller dataset (U or M ) is replicated to every machine of the
cluster. Each machine already holds a local partition of A which is
stored in the DFS. Then the join between the local partition of A
and the replicated copy of M (and analogously between the local



partition of A and U ) can be executed by a map operator. This
operator can additionally implement the logic to re-compute the
feature vectors from the join result, which means that we can execute
a whole re-computation of U or M with a single map operator.

Figure 1 exemplarily illustrates the parallel join for re-computing
U using three machines. We broadcast M to all participating ma-
chines, which create a hashtable for its contents, the item feature
vectors. A is stored in the DFS partitioned by its rows and forms the
input for the map operator (cf. Figure 1, where e.g., A(1) refers to
partition 1 of A). The map operator reads a row ai of A (the inter-
action history of user i) and selects all the item feature vectors mj

from the hashtable holding M that correspond to non-zero entries j
in ai. Next, the map operator solves a linear system created from
the interactions and item feature vectors and writes back its result,
the re-computed feature vector ui for user i. The re-computation
of M works analogously, with the only difference that we need to
broadcast U and store A partitioned by its columns (the interactions
per item) in the DFS.

machine 1

Map

U(1)

A(1)

machine 2

Map

U(2)

A(2)

machine 3

Map

U(3)

A(3)

M

JO
IN

 +
 R

E
C

O
M

P
U

T
E

Figure 1: Parallel re-

computation of user fea-

tures by a broadcast-join.

machine 1

Map

Reduce

A(1)
M(1)

machine 2

Map

Reduce

A(2)
M(2)

machine 3

Map

Reduce

A(3)
M(3)

U(1) U(2) U(3)

Map

Reduce

Map

Reduce

Map

Reduce

JO
IN

R
E

C
O

M
P

U
T

E

Figure 2: Parallel re-
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tures by a repartition-join.

The proposed approach is able to avoid some of the drawbacks
of MapReduce and the Hadoop implementation described in Sec-
tion 2.1. It uses only map jobs that are easier to schedule than
jobs containing map and reduce operators. Additionally, the costly
shuffle-phase is avoided, in which all data would be sorted and sent
over the network. As we can execute the join and the re-computation
using a single job, we also spare to materialize the join result in
the DFS. Our implementation contains multithreaded mappers that
leverage all cores of the worker machines for the re-computation of
the feature matrices and uses JBlas [5] for solving the dense linear
systems present in ALS. The broadcast of the feature matrix is con-
ducted via Hadoop’s distributed cache in the initialization phase of
each re-computation. Furthermore, we configure Hadoop to reuse
the VMs on the worker machines and cache the feature matrices
in memory to avoid that later scheduled mappers have to reread
the data. The main drawback of a broadcast approach is that every
additional machine in the cluster requires another copy of the feature
matrix to be sent over the network. An alternative would be to use a
repartition join [7] with constant network traffic and linear scale-out
(cf., Figure 2). However, this technique has an enormous constant
overhead. Let ni denote the number of interactions, nm the number
of machines in the cluster, nr the replication factor of the DFS and
ne the number of users or items1. If we employ a repartition-join
we need two map-reduce jobs per re-computation then. In the first
job, we conduct the join which sends the interaction matrix A and
either U or M over the network, accounting to ni ∗ 4 + ne ∗ r ∗ 8
bytes of network traffic. The result must be materialized in the DFS,

1we assume that rating values are stored with single precision

which requires another (ni ∗ 4 + ne ∗ r ∗ 8) ∗ nr bytes of traffic.
The re-computation of the feature matrix must be conducted via a
second map-reduce job that sends all the ratings and correspond-
ing feature vectors per user or item over the network, accounting
for an additional ni ∗ r ∗ 8 bytes. On the contrary, the traffic for
our proposed broadcast-join technique depends on the number of
machines and accounts to ne ∗ r ∗ nm ∗ 8 bytes. Applying these
estimations to the datasets used for our experiments, the cluster
size would have to exceed several hundred machines to have our
broadcast-join technique cause more network traffic than a compu-
tation via repartition-join. Further, this argumentation only looks at
the required network traffic and does not account for the fact that
the computation via repartition-join would also need to sort and
materialize the intermediate data in each step. We conclude that
our approach with a series of broadcast-joins is to be preferred for
common production scenarios.

4. RELATED WORK
Zhou et. al. describe a distributed implementation using Mat-

lab, which is only suitable for running scientific experiments as
it offers no fault tolerance [23]. GraphLab [15] is a specialized
system for parallel machine learning, where programs operate on
a graph expressing the computational dependencies of the data. It
provides an asynchronous implementation of ALS. Gemulla et. al
presented a parallel matrix factorization using Stochastic Gradient
Descent [11], which leverages an intelligent partitioning to avoid
conflicting updates. They switched their implementation to MPI [20]
due to the overhead incurred by Hadoop. SystemML [19] is a pro-
prietary library for machine learning on MapReduce which allows
the declarative specification of matrix factorization algorithms. The
recommender system of Google News [8] uses a MapReduce imple-
mentation of probabilistic latent semantic indexing. As Google uses
a proprietary implementation of MapReduce, it is hard to assess the
technical details of this approach.

5. EVALUATION
In this section, we experimentally show that our approach is

suitable for real-world production settings where an approach has
to be compatible to the Hadoop ecosystem and has to run in a
few hours to be integratable into analytical workflows. We solely
focus on measuring the runtime of computing a factorization, as the
prediction quality of the ALS approach is well studied [11, 12, 23].
We use a formulation of ALS that is aimed at rating prediction [23].
Setup: The cluster for our experiments consists of 26 machines
running Java 7 and Hadoop 1.0.4 [3]. Each machine has two 8-core
Opteron CPUs, 32 GB memory and four 1 TB disk drives.
Datasets:2 We use two publicly available datasets for our exper-
iments: A set of 100,480,507 ratings given to 17,770 movies by
480,189 users from the Netflix prize [6] and another set comprised
of 717,872,016 ratings given to 136,736 songs by 1,823,179 users
of the Yahoo! Music community3. For tests at industrial-scale, we
generate a synthetic dataset termed Bigflix using the Myriad data
generation toolkit [1]. From the training set of the Netflix prize,
we extract the probability of rating each item and increase the item
space by a factor of six to gain more than 100,000 movies. Next,
we extract the distribution of ratings per user. We configure Myriad
to create data for 25 million users by the following process: For
each user, Myriad samples a corresponding number of ratings from
the extracted distribution of ratings per user. Then, Myriad samples

2Details about our experiments can be found at http://goo.gl/YXj9B
3http://webscope.sandbox.yahoo.com/catalog.php?datatype=r



an item from the item probability distribution for each rating. The
corresponding rating value is simply chosen from a uniform distribu-
tion, as we do not interpret the result anyways, but only want to look
at the performance of computing the factorization. Bigflix contains
5,231,536,647 interactions and mimicks the 25 million subscribers
and 5 billion ratings, which Netflix recently reported as its current
production workload [2].
Experimental results: We start by measuring the average runtime per
individual re-computation of U and M for different feature space
sizes on the Netflix dataset and on the Yahoo Songs dataset (cf.,
Figure 3) using 26 machines. For Netflix, the average runtime per
re-computation always lies between 35 and 60 seconds regardless
of the feature space size. This is a clear indication that for this
small dataset the runtime is dominated by the scheduling overhead
of Hadoop. For the larger Yahoo Songs dataset we see the same
behavior for small feature space sizes and observe that the computa-
tion becomes dominated by the time to broadcast one feature matrix
and re-compute the other one for larger feature space sizes of 50 and
100. We notice that re-computing M is much more costly then re-
computing U . This happens because in this dataset, the number of
users is nearly twenty times as large as the number of items, which
means that it takes much longer to broadcast U . The experiments
show that we can run 37 to 47 iterations per hour on Netflix and
15 to 38 iterations per hour on the Yahoo Songs dataset (e.g., ALS
typically needs about 15 iterations to converge on Netflix [23]). This
shows that our approach is easily able to compute factorizations of
datasets with hundreds of millions of interactions repeatedly per
day.
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Finally we run scale-out tests on Bigflix: we measure the average
runtime per re-computation of U and M during five iterations of
ALS on this dataset on clusters of 5, 10, 15, 20 and 25 machines (cf.,
Figure 4) conducting a factorization of rank ten. With 5 machines, an
iteration takes about 19 minutes and with 25 machines, we are able
to bring this down to 6 minutes. We observe that the computation
speedup does not linearly scale with the number of machines. This
behavior is expected because of the broadcast-join we employ, where
every additional machine causes another copy of the feature matrix
to be sent over the network. As discussed in Section 3.2, on clusters
with less than several hundred machines, our chosen approach is
much more performant than a repartition-join, although the latter
is linearly scaling. With 25 machines, we can run about 9 to 10
iterations per hour, which allows us to obtain a factorization in a few
hours, a timeframe completely suitable for a production setting.

6. SUMMARY
We presented an efficient scalable approach for a data-parallel

low-rank matrix factorization using Alternating Least Squares on a
cluster of commodity machines. We explained our choice of ALS as
algorithm and described how to implement it on MapReduce with

a series of broadcast-joins, which can be efficiently executed using
only map jobs. We experimentally validated our approach on two
large datasets commonly used in research and on a synthetic dataset
with more than 5 billion datapoints, which mimicks an industry
usecase. Furthermore, our code has partially been contributed to
the open source machine learning library Apache Mahout [4]. In
future work we would like to compare our approach to implementa-
tions in specialized systems [15, 22] and see if we can incorporate
approximate solutions for ALS [17].
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