
Optimistic Recovery for Iterative Dataflows in Action

Sergey Dudoladov1

Asterios Katsifodimos1

Chen Xu1

Stephan Ewen2

Volker Markl1

1Technische Universität Berlin
firstname.lastname@tu-berlin.de
2Data Artisans GmbH
firstname@data-artisans.com

Sebastian Schelter1
Kostas Tzoumas2

ABSTRACT
Over the past years, parallel dataflow systems have been employed
for advanced analytics in the field of data mining where many al-
gorithms are iterative.

These systems typically provide fault tolerance by periodically
checkpointing the algorithm’s state and, in case of failure, restoring
a consistent state from a checkpoint.

In prior work, we presented an optimistic recovery mechanism
that in certain cases eliminates the need to checkpoint the interme-
diate state of an iterative algorithm. In case of failure, our mech-
anism uses a compensation function to transit the algorithm to a
consistent state, from which the execution can continue and suc-
cessfully converge. Since this recovery mechanism does not check-
point any state, it achieves optimal failure-free performance while
guaranteeing fault tolerance.

In this paper, we demonstrate our recovery mechanism with the
Apache Flink data processing engine. During our demonstration,
attendees will be able to run graph algorithms and trigger failures
to observe the algorithms recovering with compensation functions
instead of checkpoints.

Categories and Subject Descriptors
H.2.4 [Database Management]: Parallel databases

Keywords
Iterative Algorithms; Fault-Tolerance; Optimistic Recovery

1. INTRODUCTION
In recent years, the growing demand for large-scale data analy-

sis has led to the development of new data-parallel computing plat-
forms like MapReduce [6], SCOPE [5], Apache Flink 1 and Apache
Spark [15]. Such platforms on a day-to-day basis execute a variety
of data mining tasks ranging from simple grep-style log analysis to
complex machine learning algorithms.
1Apache Flink originated from the Stratosphere research
project [1]. See https://flink.apache.org
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGMOD ’15, May 31 - June 04, 2015, Melbourne, VIC, Australia
Copyright 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00
http://dx.doi.org/10.1145/2723372.2735372 .

An important primitive present in many machine learning algo-
rithms is iteration (or recursion). Iteration repeats a certain com-
putation until a termination condition is met. The need for efficient
execution of iterative algorithms spawned the development of spe-
cialized systems [10, 11] as well as integration of iterations into
existing dataflow systems [3, 8].

Iterative dataflow computations are often deployed in large clus-
ters of commodity machines, where failures are common. This
makes a dataflow system’s ability to deal with failures important.
The usual approach to fault tolerance is to periodically checkpoint
the algorithm state to stable storage. Upon failure, the system re-
stores the state from a checkpoint and continues the algorithm’s
execution. This method is commonly referred to as rollback recov-
ery [7].

This pessimistic approach works well if failures happen regu-
larly. However, real-world use cases indicate that many compu-
tations do not run for such a long time or on so many nodes that
failures become commonplace [17]. In the case of less frequent
failures checkpoints may unnecessarily increase the latency of a
computation [16]. Since one still needs to protect against failures,
other approaches to recovery may be worth investigating.

In prior work [14], we exploited the convergence properties of
certain classes of iterative algorithms to provide an optimistic re-
covery mechanism. Instead of restoring the lost state from a check-
point, our mechanism restores the lost state through a compensation
function. This user-supplied function generates a consistent algo-
rithm state, and the algorithm then resumes execution converging
to a correct result as if no failures had occurred.

In this paper, we demonstrate this recovery technique using
Apache Flink as a testbed. To exemplify how iterative computa-
tions can recover without checkpoints, we employ the Connected
Components and PageRank algorithms: Schelter et al. [14] have
previously shown them to converge after recovery with compensa-
tion functions. We implement a graphical user interface (GUI) with
which conference attendees will be able to choose Flink tasks to fail
during the algorithms’ execution. The failures lead to the partial
loss of intermediate results; attendees can observe how compensa-
tion functions restore the lost state and how the algorithms converge
afterwards.

2. BACKGROUND
Section 2.1 introduces the Apache Flink data processing engine

and describes its support for efficient execution of iterative algo-
rithms. Section 2.2 discusses the optimistic recovery of iterative
computations with compensation functions.

https://flink.apache.org

2.1 Apache Flink
Due to suboptimal performance when executing complex datafl-

ows and iterative computations [2], the MapReduce model has
been extended by newly emerging dataflow systems [1, 2, 3, 15,
12]. These systems typically represent a program as a directed
acyclic graph (DAG), with vertices representing individual tasks
running user-defined functions (UDFs) and edges representing data
exchanges among vertices. The systems explicitly support efficient
execution of iterative computations in a distributed manner [8, 3,
15, 12].

We build upon Apache Flink, which extends the MapReduce
paradigm with several higher-order functions such as Join (for ap-
plying a UDF to the result of an equi-join between two datasets) or
Cross (for applying a UDF to the cross product of two datasets). A
user expresses a data analysis program in terms of these functions
and UDFs using the high-level language API. Flink then compiles
the program into a DAG of operators, optimizes it and runs in a
cluster. Flink allows the user to mark a part of the DAG as itera-
tive. The system then repeatedly executes that part of the DAG by
forwarding the output of its last operator to its first operator. The
execution finishes when either a predefined number of iterations
has been run or a user-supplied termination criterion is met [8].

Flink provides two ways to execute iterative parts of a DAG: bulk
iterations and delta iterations. Bulk iterations always recompute in-
termediate result of an iteration as a whole. However, in many cases
parts of the intermediate state converge at different speeds, e.g. in
single-source shortest path computations in large graphs. In such
cases, the system would waste resources by always recomputing
the whole intermediate state, including the parts that do not change
anymore. To alleviate this issue, Flink offers delta iterations. This
mode models an iterative computation with two datasets: the solu-
tion set holds the current intermediate result, while the working set
holds updates to the solution set. During a delta iteration the sys-
tem consumes the working set, selectively updates elements of the
solution set, and computes the next working set from the updates.
The delta iteration terminates once the working set becomes empty.

2.2 Optimistic Recovery
To execute algorithms on massive datasets in a distributed man-

ner, algorithms’ intermediate results must be partitioned among
machines. Failures cause the loss of a subset of these partitions;
to continue execution, the system has to restore the lost data first.
Rollback recovery is a popular method to ensure fault tolerance [7].
The idea is to periodically checkpoint the algorithm state to stable
storage. Upon failure, the system halts execution, restores a con-
sistent state from a previously written checkpoint and resumes exe-
cution. This approach has the drawback that it always incurs over-
head to the execution, even in failure-free cases. An alternative is
lineage-based recovery [15], which retains lineage, i.e. information
about how a partition was derived. After a failure, lineage allows
the system to recompute the lost partitions only. Unfortunately,
lineage-based recovery does not perform well for many iterative
computations, because a partition of the current iteration may de-
pend on all partitions of the previous iteration (e.g. when a reducer
is executed during an iteration). In such cases after a failure the
iteration has to be restarted from scratch to re-compute lost parti-
tions.

In previous work [14], we proposed to exploit the robust nature
of a large class of fixpoint algorithms for an optimistic recovery
mechanism. These algorithms can converge to the correct solutions
from many intermediate states, not only from the one checkpointed
before the failure. We introduce a user-defined compensation func-
tion which a system uses to re-initialize lost partitions. This func-

labels

graph

Candidate-Label
Reduce

Label-Update
Join

Label-To-Neighbors
Join

FixComponents
Map

 workset

(a) Connected Components.

ranks

FixRanks
Map

Find-Neighbors
Join

Compare-To-Old-Rank
Join

links

Recompute-Ranks
Reduce

(b) PageRank.

Figure 1: Dataflows with compensations.

tion restores a consistent state from which an algorithm can con-
verge. For example, if the algorithm computes a probability distri-
bution, the compensation function has to ensure that probabilities
in all partitions sum up to one.

Failure-free execution proceeds as if no fault tolerance is needed:
the system neither checkpoints intermediate state nor it tracks the
lineage. Therefore, this approach provides optimal failure-free per-
formance. When a failure occurs, the system pauses the current
iteration ignoring the failed tasks and re-assigns the lost computa-
tions to newly acquired nodes. After that, the system invokes the
compensation function on all partitions to restore a consistent state
and resumes the execution. Essentially, the compensation func-
tion brings the computation “back on track”: the function and sub-
sequent algorithm iterations correct errors introduced by the data
loss.

To illustrate our approach, we describe how to optimistically
recover two well-known fixpoint algorithms via a compensation
function.

2.2.1 Recovering Connected Components
The Connected Components algorithm identifies connected com-

ponents of an undirected graph, i.e. maximum cardinality sets
of vertices that can reach each other. We use the diffusion-based
algorithm that propagates the minimum label of each component
through a graph [9]. Figure 1(a) shows the conceptual Flink
dataflow for finding connected components2 with delta iterations.
Initially, we assign a unique label to each vertex (c.f. the ‘labels’
input which also serves as the solution set). The workset consists
of all vertices that updated their labels during the previous itera-
tion; it initially equals to the ‘labels’ input. The ‘graph’ dataset
contains the edges of a graph. At every iteration,for every vertex
we compute the minimum label of its neighbors from the workset
via the ‘candidate-label’ reduce. Next, we compare the resulting
candidate labels to the current labels from the solution set in the
‘label-update’ join. If the candidate label is smaller than the cur-
rent label, we update the solution set and forward the new label
to the ‘label-to-neighbors’ join. This join computes the workset
for the next iteration, which consists of the updated labels and the
neigboring vertices of a vertex that was updated. The algorithm
converges when there are no more label updates. At convergence,

2Blue rectangles denote operators, white circles denote data
sources and brown rectangles denote compensation functions. The
dotted line around the functions signifies that they are invoked only
after failures and are absent from the dataflow otherwise.

Figure 2: GUI for demonstrating optimistic recovery of the Con-
nected Components algorithm.

all vertices in a connected component share the same label, namely
the minimum of the initial labels of vertices in this component.
Compensation function for Connected Components: Failures
during the course of the algorithm destroy computed labels for a
subset of vertices. Simply re-initializing lost vertices to their ini-
tial labels guarantees convergence to the correct solution [14]. The
‘fix-components‘ map executes this compensation function in the
dataflow illustrated in Figure 1(a).

2.2.2 Recovering PageRank
PageRank is a well-known algorithm for ranking the vertices of a

large network by importance with respect to its link structure [13].
The algorithm works by computing the steady-state probabilities of
a random walk on the network. Figure 1(b) illustrates the dataflow
for modeling PageRank with a Flink bulk iteration. The input con-
sists of the initial vertices’ ranks (c.f. the ‘ranks’ dataset) and the
edges with transition probabilities (c.f. the ‘links‘ dataset). During
a PageRank iteration, every vertex propagates a fraction of its rank
to its neighbors via the ‘find-neighbors’ join. Next, we re-compute
the rank of each vertex from the contributions of its neighbors in the
‘recompute-ranks‘ reduce. At the end of each iteration, we compare
the old and new ranks of every vertex to check for convergence (c.f.
the ‘compare-to-old-rank’ join).
Compensation function for PageRank: Losing partitions during
the execution of PageRank means that we lose the current ranks
of the vertices contained in the failed partitions. As long as all
ranks sum up to one, the algorithm will converge to the correct
solution [14]. Therefore, it is sufficient to uniformly redistribute
the lost probability mass to the vertices in the failed partitions. The
‘fix-ranks’ map in Figure 1(b) takes care of this.

3. DEMONSTRATION
Section 3.1 introduces the demo infrastructure. Sections 3.2

and 3.3 describe the demonstration scenario and visualization of
the failure-recovery process for the Connected Components and
PageRank, respectively.

(a) Initial state. (b) Before failure.

(c) After compensation. (d) Converged state.

Figure 3: Connected Components algorithm convergence.

3.1 Setup
The demo setup comprises a laptop and a graphical user inter-

face (GUI). Figures 2 and 4 depict the user interface. By switching
the tabs at the top of the interface, users can choose PageRank, if
they want to watch the recovery of bulk iterations, or Connected
Components, if they want to watch the recovery of delta iterations.
Next, attendees pick the input to the chosen algorithm: either a
small hand-crafted graph or a larger graph derived from real-world
data. Running the demo on the small graph makes it easy to com-
prehend visually; we slow down the small graph demo so that demo
visitors can easily trace each iteration. For the larger graph, we use
a publicly available snapshot3 of the Twitter’s social network [4].
We only visualize the small hand-crafted graph in the GUI; for the
larger graph, the attendees can track the demo progress only via
plots of statistics of the algorithms’ execution.

Once the parameters are set, the user presses the "play" button
to run the demo. The system then executes the algorithm and vi-
sualizes results of each iteration. The "backward" button jumps to
the previous iteration; the "pause" button stops the demo at the end
of the current iteration. The progression of algorithms on the small
graphs is visualized: after an iteration finishes, the interface depicts
connected components or page ranks as given by the intermediate
results calculated at this iteration.

Conference attendees will be able to choose which partitions to
fail and in which iterations via our GUI. The demo tracks such
failures and applies the relevant compensation function to restore
the lost partitions.

3.2 Connected Components
Figure 2 illustrates the GUI for demonstrating the recovery of

Connected Components. Attendees will observe the following
demo behavior on the small graph: a distinct color highlights
the area enclosing each connected component. Initially, the area
around every vertex has a distinct color, as every vertex starts out
in its own component (Figure 3(a)). When an iteration finishes,
the vertices that changed labels in this iteration are redrawn with
a new enclosing color. The new color indicates that the vertices
form a new intermediate component. The color comes from the

3http://twitter.mpi-sws.org/data-icwsm2010.html

http://twitter.mpi-sws.org/data-icwsm2010.html

Figure 4: GUI for demonstrating optimistic recovery of the PageR-
ank algorithm.

vertex from which the (updated) vertices accepted their new min-
imum labels. During the execution, areas of the same color grow
as the algorithm discovers larger and larger parts of the connected
components . The number of colors decreases; by that attendees
can track the convergence of the algorithm. In case of a failure,
our GUI highlights the lost vertices (Figure 3(b)), and the compen-
sation function restores them to their initial state (Figure 3(c)). In
the end, the algorithm converges and the number of distinct col-
ors equals the number of connected components: the same color
encloses all vertices in the same component (Figure 3(d)).

The demo GUI in Figure 2 shows (i) the number of vertices con-
verged to their final connected components 4 at each iteration and
(ii) the number of messages (candidate labels send to neighbors)
per iteration. The GUI bottom left corner contains the first plot:
note the plummet at the third iteration corresponding to the detected
failure. Attendees can expect to see similar plummets each time a
failure causes a loss of a partition with already converged vertices.
The plot at the bottom right corner illustrates the messages sent per
iteration. The increased amount of messages at iterations 2 and
4 corresponds to the effort to recover from failures in previous it-
erations. The system processes more messages compared with a
failure-free case, because the vertices restored to their initial labels
by the compensation function (as well as their neighbors) have to
propagate their labels again.

3.3 PageRank
Figure 4 illustrates the GUI for visualizing the recovery of

PageRank. We make the size of a vertex represent the magnitude
of its PageRank value: the higher the rank, the larger the vertex.
PageRank starts from a uniform rank distribution: all the vertices
are of the same size in the beginning (Figure 5(a)). At the end
of each iteration, we rescale each vertex proportionally to its re-
computed rank. Thus, attendees can watch the convergence of the
algorithm: vertices grow and shrink and over time reach their final
size, meaning that they converged to their true rank. In the case of
a failure, we lose the ranks of the vertices contained in the failing
partition. The GUI highlights those vertices (Figure 5(b)), and the
compensation function restores their ranks by uniformly distribut-

4We precompute the true values for presentation reasons.

(a) Initial state. (b) Before failure.

(c) After compensation. (d) Converged state.
Figure 5: PageRank algorithm convergence.

ing the lost probability mass over them (Figure 5(c)). In the end,
the vertices converge to their true ranks, irrespective of the com-
pensation (Figure 5(d)).

Analogously to Connected Components, our GUI from Figure 4
plots several statistics collected during the execution: (i) the num-
ber of vertices converged to their true PageRank at each iteration
and (ii) the convergence behavior of PageRank. The bottom left
corner of the GUI shows the first plot. A loss of partitions with
converged vertices corresponds to the plummet in the plot in the
iteration 6 after the failure in the iteration 5. The second plot (bot-
tom right corner) shows the L1-norm of the difference between the
current estimate of the PageRank vector and the estimate from the
previous iteration. Over the course of the algorithm, the differ-
ence between the estimates at each pair of consecutive iterations
becomes smaller and smaller because of the convergence. Hence
the downward trend in the plot. Failures appear as spikes in the
plot (iteration 6), because the ranks computed during a failure-free
iteration are to be closer to the estimates obtained in the previous
iteration than the rescaled ranks compensated after failures. Hence,
we can expect to observe an increase in the difference after an iter-
ation with failures.

4. ACKNOWLEDGMENTS
The authors would like to acknowledge the invaluable help of

Mingliang Qi in developing the GUI of this demonstration. This
work has been supported through grants by the German Science
Foundation (DFG) as FOR 1306 Stratosphere, by the German Min-
istry for Education and Research as Berlin Big Data Center BBDC
(funding mark 01IS14013A) and by the EIT ICT Labs as EUROPA
2014 EITs Cloud-Based Data project (activity code 12115).

5. REFERENCES
[1] A. Alexandrov, R. Bergmann, S. Ewen, J. C. Freytag,

F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl,
F. Naumann, M. Peters, A. Rheinländer, M. J. Sax,
S. Schelter, M. Höger, K. Tzoumas, and D. Warneke. The
Stratosphere platform for big data analytics. The VLDB
Journal’14, pp. 939–964.

[2] S. Babu and H. Herodotou. Massively Parallel Databases and
MapReduce Systems. Foundations and Trends in
Databases’12, 5(1):1–104.

[3] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient Iterative Data Processing on Large Clusters.
VLDB’10, pp. 285–296.

[4] M. Cha, H. Haddadi, and K. P. Gummadi. Measuring User
Influence in Twitter: The Million Follower Fallacy.
ICWSM’10, pp. 10–17.

[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. PVLDB’08,
pp. 1265–1276.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM
’08, 51(1):107–113.

[7] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Survey’02,
34(3):375–408.

[8] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning
Fast Iterative Data Flows. PVLDB’12, 5(11):1268–1279.

[9] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
Peta-Scale Graph Mining System Implementation and
Observations. ICDM’09, pp. 229–238.

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed GraphLab: A framework for
machine learning and data mining in the cloud. VLDB’12,
pp. 716–727.

[11] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. SIGMOD’10, pp. 135–146.

[12] D. G. Murray, F. Mcsherry, R. Isaacs, M. Isard, P. Barham,
and S. Valley. Naiad: A Timely Dataflow System. SOSP ’13,
pp. 439–455, 2013.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the Web.
Stanford Infolab’98, pp. 1–17.

[14] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. “All Roads
Lead to Rome:” Optimistic Recovery for Distributed
Iterative Data Processing. CIKM’13, pp. 1919–1928.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets.
HotCloud’10, pp. 1–7.

[16] P. Upadhyaya, Y. Kwon, and M. Balazinska. A Latency and
Fault-Tolerance Optimizer for Online Parallel Query Plans.
Proceedings of the 2011 International Conference on
Management of Data - SIGMOD ’11.

[17] Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical
Processing in Big Data Systems: A Cross-industry Study of
MapReduce Workloads. Proceedings of the 2012 VLDB
Endowment, pp. 1802–1813.

	Introduction
	Background
	Apache Flink
	Optimistic Recovery
	Recovering Connected Components
	Recovering PageRank

	Demonstration
	Setup
	Connected Components
	PageRank

	Acknowledgments
	References

