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Abstract

This thesis lays the ground work for enabling scalable data mining in massively parallel
dataflow systems, using large datasets. Such datasets have become ubiquitous. We
illustrate common fallacies with respect to scalable data mining: It is in no way sufficient
to naively implement textbook algorithms on parallel systems; bottlenecks on all layers of
the stack prevent the scalability of such naive implementations. We argue that scalability
in data mining is a multi-leveled problem and must therefore be approached on the
interplay of algorithms, systems, and applications. We therefore discuss a selection of
scalability problems on these different levels.

We investigate algorithm-specific scalability aspects of collaborative filtering algorithms
for computing recommendations, a popular data mining use case with many industry
deployments. We show how to efficiently execute the two most common approaches,
namely neighborhood methods and latent factor models on MapReduce, and describe
a specialized architecture for scaling collaborative filtering to extremely large datasets
which we implemented at Twitter. We turn to system-specific scalability aspects, where we
improve system performance during the distributed execution of a special class of iterative
algorithms by drastically reducing the overhead required for guaranteeing fault tolerance.
Therefore we propose a novel optimistic approach to fault-tolerance which exploits the
robust convergence properties of a large class of fixpoint algorithms and does not incur
measurable overhead in failure-free cases. Finally, we present work on an application-
specific scalability aspect of scalable data mining. A common problem when deploying
machine learning applications in real-world scenarios is that the prediction quality of
ML models heavily depends on hyperparameters that have to be chosen in advance.
We propose an algorithmic framework for an important subproblem occuring during
hyperparameter search at scale: efficiently generating samples from block-partitioned
matrices in a shared-nothing environment.

For every selected problem, we show how to execute the resulting computation automat-
ically in a parallel and scalable manner, and evaluate our proposed solution on large
datasets with billions of datapoints.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit den technischen Grundlagen, die notwendig sind, um
skalierbares Data Mining auf heutigen, großen Datensätzen mithilfe massiv-paralleler
Datenflusssysteme zu ermöglichen. Sie beschreibt gängige Fehlannahmen im Bezug
auf skalierbares Data Mining. Es reicht in keinster Weise aus, Algorithmen in ihrer
herkömmlichen Formulierung auf parallelen Systemen zu implementieren. Engpässe auf
allen Schichten verhindern die Skalierbarkeit solch naiver Implementierungen. Die Arbeit
legt dar, dass Skalierbarkeit im Data Mining ein mehrschichtiges Problem ist und daher
im Zusammenspiel von Algorithmen, Systemen und Anwendungen angegangen werden
muss. Deshalb befasst sich diese Arbeit mit einer Auswahl von Skalierbarkeitsproblemen
in verschiedenen Schichten.

Die Arbeit untersucht algorithmus-spezifische Skalierbarkeitsaspekte von ‘Collabora-
tive Filtering’-Algorithmen zur Empfehlungsberechnung, eine beliebte Data Mining-
Technik, die häufig in der Industrie Anwendung findet. Es wird dargelegt, wie die beiden
vorherrschenden Ansätze, ‘Neighborhood Methods’ und ‘Latent Factor Models’ mithilfe
des MapReduce Paradigmas skaliert werden können. Desweiteren beschreibt die Arbeit
ein spezialisierte Architektur, die bei Twitter implementiert wurde, um Collaborative
Filtering auf extrem große Datensätze anwenden zu können. Im Folgenden wird sich
mit system-spezischen Skalierbarkeitsaspekten befasst: die Arbeit beschreibt, wie man
die Systemleistung während der verteilten Ausführung einer speziellen Klasse iterativer
Algorithmen verbessern kann, indem man den Mehraufwand drastisch reduziert, der für
die Garantie von Fehlertoleranz notwendig ist. Die Arbeit führt einen neuartigen opti-
mistischen Ansatz zur Fehlertoleranz ein, der die robusten Konvergenzeigenschaften einer
großen Klasse von Fixpunktalgorithmen ausnutzt und während fehlerfreier Ausführung
keinen messbaren Mehraufwand verursacht. Schlussendlich widmet sich die Arbeit einem
anwendungsspezifischen Skalierbarkeitsaspekt. Ein gängiges Problem beim Einsatz von
Anwendungen des Maschinellen Lernens ist, dass die Vorhersagequalität der Modelle
häufig stark von Hyperparametern abhängt, die im Vorhinein gewählt werden müssen.
Die Arbeit beschreibt ein algorithmisches Framework für ein wichtiges Unterproblem bei
der Suche nach Hyperparameter auf großen Datensätzen: die effiziente Generierung von
Stichproben aus block-partitionierten Matrizen in verteilten Systemen.

Für jedes ausgewählte Problem legt die Arbeit dar, wie die zugrundeliegenden Berech-
nungen automatisch auf eine parallele und skalierbare Weise ausgeführt werden können.
Die präsentierten Lösungen werden experimentell auf großen Datensätzen bestehend aus
Milliarden einzelner Datenpunkte evaluiert.
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1 Introduction

“These inventions gave rise, as is well known, to an industrial revolution,
a revolution which altered the whole civil society; one, the historical

importance of which is only now beginning to be recognised.”

—Friedrich Engels, 1844

In recent years, the cost of acquiring and storing data of large volume has dropped
significantly. The growing ability to process and analyze these datasets presents a
multitude of previously unimaginable possibilities. Scientists can test hypotheses on data
several orders of magnitude larger than before. Companies apply advanced data analysis
for creating disruptive applications and services, often based on machine learning (ML)
and graph mining approaches. Examples include relevance-based ranking of trillions
of web pages [49] to improve search engines, self-driving cars [122], statistical speech
recognition and machine translation learned from web-derived corpora [83] as well as
realtime article recommendation in news aggregation platforms [46].

Due to size and complexity of the data, scaling-out the analysis to parallel processing
platforms running on large, shared-nothing commodity clusters is popular [49]. In the last
decade, MapReduce has emerged as a de-facto standard for complex, distributed data
processing applications in such a setting. Although parallel relational database systems
for shared-nothing architectures exist since the mid of the 1980s, the conceivably simpler
and in many cases less performant family of MapReduce-based systems have become the
dominant choice for many large-scale data analysis cases. This popularity stems from
several reasons. Analogous to parallel databases, MapReduce relieves the programmer
from having to handle machine failures and concurrency, and automatically executes the
user’s program in parallel on a cluster. Yet, MapReduce-based systems typically have a
lower cost of ownership compared to parallel databases, given that they aim at datacenters
built from many low-end commodity servers instead of a few high-end servers. Moreover,
in contrast to classical database systems, MapReduce-based systems are independent of
the underlying storage system, which makes them a highly flexible tool and the prime
choice for “extract-transform-load” and other read-once workloads [50,165].

An aspect that makes MapReduce attractive for data mining applications is that MapRe-
duce programs allow the programmer to express complex transformations much more

1



1 Introduction

easily than SQL-based programming extensions such as PL/SQL. Aditionally, MapReduce-
based systems have been designed for handling semi-structured data (typically in the
form of key-value pairs) which occurs often in modern analysis use cases. Such data is
often ingested from the web or social media. Such semi-structured data is traditionally
very problematic for relational databases that rely on fixed, well-defined schemata. Yet,
MapReduce alone does not pose a solution for scaling data mining applications to today’s
datasets. Scalable data mining is still a very hard problem in real-world applications
and an active area of research [2,76,89,108,117,120,126,163], for a variety of reasons.
Most importantly, existing data mining algorithms have been designed to minimize CPU
cycles on a classical von Neumann architecture, often with the assumption of quick
random access to the input data. In the distributed shared-nothing setting however, the
input data is always partitioned across several machines and performance is typically
reached by minimizing inter-machine communication rather than CPU cycles, as network
bandwidth is usually the most scarce resource in large clusters. Therefore, a large number
of algorithms have to be reformulated and redesigned to scale in distributed architectures.
Moreover, MapReduce has serious deficiencies, such as its lack of declarativity, inefficient
performance when executing iterative computations, as well as missing operators for
combining multiple datasets [18]. This situation currently leads to the substitution of
MapReduce by a new generation of systems built on more advanced parallel processing
paradigms [2,7, 186]. Scalable data mining applications have to adapt to and embrace
the possibilities offered by these new paradigms. A further challenge is that successfully
putting scalable data mining applications into production today requires a strong back-
ground in data management and distributed systems, due to the current immaturity of
parallel processing systems. This fact unnecessarily constrains the number of people
that can conduct such tasks, as the majority of data analysts come from a background
in statistics and machine learning [121]. Combining the aforementioned challenges in
designing scalable data mining systems and applications leads to the core statement of
the thesis:

Thesis Statement: Scalability in data mining is a multi-leveled problem and must
therefore be tackled on the interplay of algorithms, systems, and applications. None of
these layers is sufficient to provide scalability on its own. Therefore, this thesis presents
work on scaling a selection of problems in these layers. For every selected problem, we
show how to execute the resulting computation automatically in a parallel and scalable
manner. Subsequently, we isolate user-facing functionality into a simple user-defined
function, to enable usage without a background in systems programming.

2



1.1 Example: Scalability Bottlenecks in Principal Components Analysis

1.1 Example: Scalability Bottlenecks in Principal Components Analysis

We use an example to illustrate the difficulty of scaling data mining in current MapReduce-
based systems: Principal Component Analysis (PCA) gives insight to the internal
structure of a dataset and constitutes a standard analysis technique in a wide range of
scientific fields (e.g. signal processing, psychology, quantitative political science). PCA
projects the data onto a lower dimensional space, such that the variance of the data is
maximized [24]. Algorithm 1 shows the three steps that a textbook PCA implementation
conducts to compute the first k principal components, the basis of this space. The dataset
to analyze consists of N observations. A row xi of X corresponds to the i-th observation.
At first, the data has to be centered, i.e., we substract the vector 1

N

∑
i xi of column

means from every row of X (cf., line 1). Next, we compute the matrix multiplication
XX> and divide the result by the number of observations N to obtain the covariance
matrix C (c.f., line 2). In line 3, we compute the first k eigenvectors of the covariance
matrix C which correspond to the first k principal components of X.

Algorithm 1: Computing principal components of a matrix X

1 X = X − 1
N

∑
i xi # centering of the data

2 C = 1
NXX

> # computation of the covariance matrix

3 P = eigs(C, k) # computation of leading eigenvectors

Imagine a real-world application, where we want to apply PCA to a large, sparse
dataset such as a text corpus in ‘bag-of-words’ representation to gain insights about the
relationships of term occurrences. It is not sufficient to implement the simple steps from
Algorithm 1 on a MapReduce-based system such as Hadoop [11] to get a scalable and
efficient PCA implementation. The reasons why it is hard to scale these three simple
lines of PCA very well illustrate some major pain points about scaling-out data mining
algorithms.

Algorithm Level : The first and most fundamental aspect is the scalability of the mathe-
matical operations of the algorithm itself. Careful investigation of the operations applied
reveals two scalability bottlenecks in the algorithm. The first bottleneck is caused by the
centering of the data. A lot of modern data analysis tasks deal with very large and at the
same time very sparse matrices (e.g., adjacency matrices in social network analysis [39]
or matrices representing interactions between users and items in recommendation min-
ing [182]). Often, the ratio of non-zero entries to the overall number of cells in the matrix
is one-thousandth or less [39, 182]. These large matrices are efficiently stored by only
materializing the non-zero entries. Applying the first step in PCA (line 1 in Algorithm 1),
which centers the data, to such sparse matrices would have devastating consequences. The
majority of zero entries become non-zero values and the materialized data size increases
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by several orders of magnitude, thereby posing a serious scalability bottleneck. The
second bottleneck is caused by the matrix multiplication XX> conducted to compute
the covariance matrix in line 2 of Algorithm 1. Its runtime is quadratic in the number
of observations that our dataset contains (which is equal to the number of rows of the
input matrix X). Computations with quadratic runtime quickly become intractable on
large inputs. Therefore, a direct implementation of the textbook PCA algorithm will not
scale1. In general, there are three dimensions of scaling algorithms. For the algorithm
to scale to large amounts of input data (“data scaling”), its operations must preserve
data sparsity, a data-parallel execution strategy on partitioned input must exist, and
their runtime must be at most linear. If the size of the model of the algorithm grows
proportionally to the cardinality of the input data, it is necessary to find a way to execute
the algorithm efficiently with a partitioned model (“model scaling”). A third strategy is
to train many small models on samples of the data and combine their predictions later.

System Level : Many data mining algorithms are iterative. Such algorithms start from an
initial state and operate on the data to iteratively refine this state until a convergence
criterion is met. In our example, we need a scalable way to compute the k first eigenvectors
of the covariance matrix in the implementation of the eigs function in line 3 of Algorithm 1.
The iterative Lanczos algorithm is the predominant scalable method to compute these
eigenvectors [97]. A parallel processing system suitable for data mining must be able to
efficiently run such iterative programs. During the execution of such computations in
large clusters, guaranteeing fault tolerance is a mandatory task. Current systems for
executing these iterative tasks typically achieve fault tolerance by checkpointing the result
of an iteration as a whole [117,120,186]. In case of a failure, the system halts execution,
restores a consistent state from a previously saved checkpoint and resumes execution
from that point. This approach is problematic as it potentially incurs a high overhead.
In order to tolerate machine failures, every machine has to replicate its checkpointed
data to other machines in the cluster. Due to the pessimistic nature of the approach,
this overhead is always incurred, even if no failures happen during the execution, as the
checkpoints must be written in advance. It is highly desirable to find a mechanism that
guarantees fault tolerance for iterative computations and at the same time minimizes
checkpointing overhead in failure-free cases.

Application Level : Research on scalable data mining often exclusively focuses on finding
efficient ways to train machine learning models. In order to apply these models in real
applications in industry use cases however, additional work is necessary. Most models have
hyperparameters that need to be carefully chosen as they heavily influence the quality
of a model (a task known as parameter selection). Another important task is feature
selection, where we aim to select a subset of the features that provides sufficient model
quality. In PCA, we might for example want to eliminate columns from the data matrix

1randomized algorithms provide scalable PCA [84]
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1.2 Contributions and Greater Impact

X that have negligible impact on the resulting principal components [109]. These tasks
are solved via meta learning techniques such as cross-validation. These meta learning
techniques typically first generate samples from the input data, and secondly train and
evaluate models on these samples. Existing data parallel techniques for model training
and evaluation have been proposed recently [26], but efficiently generating samples from
large datasets is still problematic in many cases. This is especially true when the input
dataset is physically represented as block-partitioned matrix [76, 89]. Automation of
meta learning functionality in existing large scale data mining frameworks has therefore
been recognized as a major challenge [108,126], as data scientists usually spend a major
amount of their time on selecting well-working features and hyperparameters.

The three pitfalls listed illustrate what we already mentioned in the thesis statement.
Scalable data mining is such a hard problem because there is no ‘silver bullet’ solution
to the problem. Scalability has to be achieved on many different levels at once, and all
of these levels require methods from separate fields of computer science. For algorithm
scalability, a careful choice of the mathematical operations involved is required. In order
for systems to efficiently execute scalable algorithms, techniques from distributed systems,
data management and system engineering have to be combined. On the application level,
we must scale common use cases and the same time carefully design the implementations,
such that they allow adaption without a background in systems programming.

1.2 Contributions and Greater Impact

In reference to the thesis statement, we present the following contributions in scaling a
selection of problems on the level of algorithms, systems and applications:

We reformulate the two most prominent collaborative filtering algorithms for recom-
mendation mining to scale on MapReduce. Our formulation includes an abstraction
of different similarity measures and least squares solvers used in the algorithms, which
allows for their adaption without a background in systems programming. We showcase
linear scalability of the resulting algorithms with growing a user-base and perform an
experimental evaluation on real-world and synthetic datasets with up to 5 billion data
points.

On the systems side, we propose a novel optimistic recovery mechanism for distributed
processing of a large class of iterative algorithms. This mechanism provides optimal
failure-free performance with respect to the overhead required to guarantee fault tolerance.
The main idea is to exploit the robustness of a large class of fixpoint algorithms, which
converge from many different intermediate states. In case of a failure, a user-defined
compensation function restores a valid intermediate state which allows the algorithm to
converge to the correct solution afterwards. We evaluate our approach with simulated
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failures during processing of datasets with billions of data points.
Further systems-based research resulted in the proposal and implementation of a dis-
tributed, asynchronous parameter server for matrix factorization. Here, we allow adapta-
tion to different loss functions with a simple integrated user-defined function. The system
supports scalable hyperparameter search using model multiplexing techniques which
enable it to train and evaluate many models in a single run. We present an experimental
evaluation on a matrix with more than 200 million rows and columns and 38.5 billion
entries, which to the best of our knowledge is the largest dataset used so far in the
academic literature on collaborative filtering.

Finally, we present work on scaling import application scenarios in data mining, such as
cross-validation and ensemble learning. We focus on the subproblem of efficient sample
generation from distributed, block-partitioned matrices. This functionality is an integral
part of enabling meta learning in large-scale ML systems with block-aware operators.
We propose an efficient, scalable single-pass algorithm for sample generation that allows
for a high degree of parallelism. This algorithm supports distributed sampling with and
without replacement as well as sample generation for common meta learning techniques.
Furthermore, it scales linearly with the number of observations in the dataset and the
number of sample matrices to generate. We evaluate our algorithm in three different
systems, using matrices with up to 10 billion entries, and find that we outperform a
linear algebra-based sample generation method by more than an order of magnitude.

Parts of this thesis have already been published as follows:

1. Sebastian Schelter, Douglas Burdick, Berthold Reinwald, Alexandre Evfimievski,
Juan Soto, Volker Markl: Efficient Sample Generation for Scalable Meta Learning,
31st IEEE International Conference on Data Engineering (ICDE), 2015

2. Sebastian Schelter, Venu Satuluri, Reza Zadeh: Factorbird – a Parameter Server
Approach to Distributed Matrix Factorization, Distributed Machine Learning and Matrix
Computations workshop in conjunction with NIPS 2014

3. Sebastian Schelter: Scaling Data Mining in Massively Parallel Dataflow Systems,
PhD Symposium at ACM SIGMOD, pp. 11-14, 2014

4. Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph
Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser,
Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias
Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, Daniel Warneke:
The Stratosphere platform for big data analytics, VLDB Journal, 23(6), pp. 939-964, 2014

5. Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, Volker Markl: “All Roads
Lead to Rome:” Optimistic Recovery for Distributed Iterative Data Processing, ACM Con-
ference on Information and Knowledge Management (CIKM), pp. 1919-1928, 2013
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6. Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexandrov,
Volker Markl: Distributed Matrix Factorization with MapReduce using a series of
Broadcast-Joins, ACM Conference on Recommender Systems (RecSys), pp. 281-284, 2013

7. Sebastian Schelter, Christoph Boden, Volker Markl: Scalable Similarity-Based
Neighborhood Methods with MapReduce, ACM Conference on Recommender Systems (Rec-
Sys), pp. 163-170, 2012

Early results of the thesis work have been contributed to open source software libraries
and are already deployed in industry use cases. An implementation of our approach
to scale out neighborhood-based recommendation mining on MapReduce has been
contributed to the popular open source machine learning library Apache Mahout [13]. This
implementation serves as the foundation for many large-scale, real-world recommender
systems, e.g. place recommendation at Foursquare [67], scientific article recommendation
in the academic network Mendeley [125] and diverse recommendations in ResearchGate
[148], the world’s largest social network for researchers. Our scalable matrix factorization-
based recommender is part of the open source machine learning server PredictionIO [144]
and forms the basis for the recommender platform Kornakapi [107] maintained by the
digital advertising company Plista [143]. During our work on optimistic recovery, we
implemented and contributed large parts of the iteration runtime of the distributed data
processing engine Apache Flink [65]. Furthermore, Twitter is considering to conduct user-
facing experiments with Factorbird [157], our proposed asynchronous matrix factorization
system. Additionally, Twitter is currently issuing a patent on the resulting system.

We observe several adoptions of the thesis work in the research world. Our work on scaling
similarity-based recommendation mining has been cited many times and is referenced in a
survey about parallel and distributed collaborative filtering [100]. Our MapReduce-based
matrix factorization serves as a baseline for the experimental evaluation of modern
parallel processing platforms such as Graphlab [118] and Spark [186] that have been
designed for high performance in distributed machine learning tasks. It is again cited in
the survey [100]. An implementation of our distributed sample generation machinery for
scalable meta learning has been contributed to the proprietary SystemML [76] platform for
large-scale machine learning developed by IBM Research. Lastly, our work on optimistic
recovery for iterative computations forms the basis for further research in this direction
at TU Berlin [52].

For the future we expect that large scale machine learning systems will be enhanced
with a comprehensive and scalable meta learning layer as envisioned by the MLBase
project [108,126]. We are confident that our sample generation machinery for blocked
matrices can be an important part of such a layer. At the same time, we see that further
projects are exploiting the robust, ‘self-healing‘ nature of a lot of fixpoint algorithms on
which we built our optimistic recovery mechanism. A prime example is Google’s coming
ASyMP system for distributed graph processing [113].
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1 Introduction

1.3 Outline and Summary of Key Results

The remainder of the thesis is structured as follows:

Chapter 2 introduces the background required for the thesis. We describe technological
developments that lead to the emergence of massively parallel dataflow systems and briefly
discuss why relational databases have been insufficient to meet these requirements. Next,
we introduce the most prominent abstractions for massively parallel dataflow processing,
namely MapReduce, Resilient Distributed Datasets (RDDs) and Parallelization Contracts
(PACTs). On the algorithmic side, we present a selection of approaches from the fields of
recommendation mining and graph mining. Major parts of this thesis focus on scaling out
exactly these families of algorithms. Finally, we introduce basic mathematical methods
that are used by the selected algorithms.

The following chapters 3 to 5 present the details of our contributions on scaling a
selection of problems in the algorithm, system, and application layer as proposed in the
thesis statement.

In Chapter 3, we present our work on algorithm scalability. We investigate the most promi-
nent approaches to recommendation mining, similarity-based neighborhood methods and
latent factor models, and describe how to reformulate and execute the underlying mathe-
matical operations efficiently in a MapReduce-based system. We provide a UDF-centric
abstraction for a wide range of similiarity measures and least squares solvers that allows
the system to automatically parallelize the resulting computations. We experimentally
evaluate our implementations on several datasets, consisting of up to 25 million users
and 5 billion interactions, to showcase scalability to industry use cases. Additionally,
we give an outlook on non-dataflow architectures for asynchronous distributed machine
learning. We revisit the problem of training latent factor models for recommendation
mining and present ‘Factorbird’, a prototypical system for factorizing large matrices
with Stochastic Gradient Descent-based algorithms. We design this system to meet
the following desiderata: scalability to tall and wide matrices with dozens of billions of
non-zeros, extensibility to different kinds of models and loss functions, and adaptability
to both batch and streaming scenarios. Factorbird uses a parameter server in order to
scale to models that exceed the memory of an individual machine, and employs lock-free
Hogwild!-style learning with a special partitioning scheme to drastically reduce conflicting
updates. We abstract the update step of Stochastic Gradient Descent into a simple UDF,
which allows for using Factorbird without a systems programming background. Further-
more, we discuss additional aspects of the design of our system such as how to efficiently
grid search for hyperparameters at scale using so-called model multiplexing. We present
experiments of Factorbird on a matrix built from a subset of Twitter’s interaction graph,
consisting of more than 38 billion non-zeros and about 200 million rows and columns,
which is to the best of our knowledge the largest matrix on which factorization results

8



1.3 Outline and Summary of Key Results

have been reported in the literature. Furthermore, we investigate the scalability of two
network analysis algorithms for ranking vertices in large graphs, using different centrality
measures. We compare scalability and expressitivity of the programming model of the
two families of systems for these tasks. We find that dataflow systems subsume the
vertex-centric model of the graph processing systems and at the same time offer a more
flexible programming model that fits a wider range of algorithms.

Chapter 4 gives details on our systems-based work on the efficient execution of iterative
computations. We focus on drastically reducing the overhead for guaranteeing fault
tolerance during the distributed execution of fixpoint algorithms. Current systems
typically achieve fault tolerance through rollback recovery. The principle behind this
pessimistic approach is to periodically checkpoint the algorithm state. Upon failure, the
system restores a consistent state from a previously written checkpoint and resumes
execution from that point. We propose an optimistic recovery mechanism using so-called
algorithmic compensations. Our method leverages the robust, self-correcting nature of a
large class of fixpoint algorithms, which converge to the correct solution from various
intermediate consistent states. In the case of a failure, we apply a user-defined compensate
function that algorithmically creates such a consistent state, instead of rolling back to a
previous checkpointed state. Our optimistic recovery does not checkpoint any state and
hence achieves optimal failure-free performance with respect to the overhead necessary
for guaranteeing fault tolerance. We illustrate the applicability of this approach for
three wide classes of problems and provide an experimental evaluation using simulated
failures during processing large datasets. In the absence of failures our optimistic scheme
is able to outperform a pessimistic approach by a factor of two to five. In presence of
failures, our approach provides fast recovery and outperforms pessimistic approaches in
the majority of cases.

Our application-layer work on scalable meta learning is given in Chapter 5. We investigate
how to scale out meta learning techniques such as cross-validation and ensemble learning,
which are crucial for applying machine learning to real-world use cases. These techniques
first generate samples from input data, and then train and evaluate machine learning
models on these samples. For meta learning on large datasets, we illustrate why the
efficient generation of samples becomes problematic, especially when the data is stored
and processed in a block-partitioned representation. In order to solve this challenge,
we present a novel, parallel algorithm for efficient sample generation from large, block-
partitioned datasets in a shared-nothing architecture. This algorithm executes in a
single pass over the data, and minimizes inter-machine communication through clever
use of so-called ‘skip-ahead’ random number generators. The algorithm supports a
wide variety of sample generation techniques through an embedded user-defined sampling
function. We illustrate how to implement distributed sample generation for popular meta
learning techniques such as hold-out tests, k-fold cross-validation, and bagging, using our
algorithm. Furthermore, we detail how our approach enables distributed sampling with
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replacement. Finally, we present an extensive experimental evaluation on datasets with
billions of datapoints, using three different distributed data processing systems. Our
results show that the runtime of our algorithm increases only linearly with the number of
samples to generate and that we are able to generate a large number of samples efficiently
with a single pass over the data. Furthermore, our algorithm beats a linear algebra-based
sample generation approach by an order of magnitude, which indicates that distributed
matrix operations do not fit the sample generation problem well and large-scale ML
systems benefit from a dedicated sample generation machinery.

Chapter 6 summarizes and concludes the findings of the thesis, discusses gaps in the
corresponding research landscape and proposes directions for future investigations.
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2 Background

This chapter introduces the necessary preliminaries for the remainder of the thesis.
We start with a brief historical overview on why a new generation of dataflow sys-
tems emerged (c.f., Section 2.1). Afterwards, we turn our focus to actual systems and
paradigms for performing large scale data analysis. We first introduce distributed filesys-
tems (c.f., Section 2.2), the dominant data store nowadays. Next, we describe the most
prominent abstractions for distributed data processing (c.f., Section 2.3), which we use for
scaling out data mining algorithms later. In the second part of this chapter, we introduce
the two most important data mining use cases for this thesis: collaborative filtering for
recommendation mining and the computation of centralities on large networks (c.f., Sec-
tion 2.4). We introduce the models behind these methods as well as algorithms to learn
them. The remaining parts of the thesis will investigate several aspects of scaling these
algorithms in massively parallel dataflow systems.

2.1 From Relational Databases to Massively Parallel Dataflow Systems

We give a brief historic overview [33] of the developments in the database and distributed
systems communities that led to today’s massively parallel dataflow systems. With
the growing need for enterprise data management, data in filesystems was more and
more moved to specialized database systems. In 1970, Codd proposed the relational
model [44], which gave rise to relational database management systems that quickly
saw commercial adoption. The database community encountered large data processing
challenges in enterprise data management: Enterprises established the collection of their
historical business data in data warehouses in order to conduct reporting and business
analytics. The encountered scalability issues during these tasks led to the development
of software-based parallel database systems in the mid 1980s. These systems leveraged
a so-called shared-nothing architecture, which means that they run on a cluster of
autonomous machines, each with their own hardware, disk and operating system that
only communicate over the network via message passing. They introduced divide-and-
conquer parallelism based on hash-partitioning the data for storage and relational query
processing tasks. Examples are Gamma [51], GRACE [69], Teradata [159] and DB2
Parallel Edition [17]. After the commercial adoption of parallel database systems in the
mid 1990’s, the database community considered parallel query processing solved and
moved on to work on other problems.
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The rise of the World Wide Web in the late 1990’s produced a growing need to index and
query the data available online. The companies working in this field considered database
technology for this usecase, but found it to be neither well-suited nor cost-effective [35].
Web-scale search engines belong to the largest data management systems in the world,
especially in terms of query volume. Yet, the ACID1 paradigm which forms the basis for
relational databases is a mismatch for the web search case which features only read-only
queries and considers high availability to be much more important than consistency.
Furthermore, the web search scenario led to new types of data and use cases that were
very different from traditional enterprise data management. A factor for Google’s success
for example was their novel way of ranking of search results based on the link structure
of the web [138], a large-scale graph processing task. Another example use case is
personalized advertising based on users’ search histories, a machine learning problem,
which is also very different from traditional relational query processing. During work on
such problems, Google developed a breed of novel storage and processing systems, aimed at
cost-effective shared-nothing clusters built from commodity hardware, which, in hindsight,
started the modern “Big Data” revolution. They created a distributed, web-scale storage
system, called the Google File System (GFS) [75], together with MapReduce [49], a
simple paradigm for distributed data processing. MapReduce is often considered to be
“parallel programming for dummies”, as the users only have to implement two simple
functions to write their programs. Analogously to parallel database systems in the
eighties, MapReduce leverages partitioned parallelism for distributed query processing
on shared-nothing clusters. Google’s publications about GFS and MapReduce [49,75]
gave birth to a free and open source variant of Google’s technology stack in the form
of Apache Hadoop MapReduce and the Hadoop Distributed File System (HDFS) [11],
which was quickly adopted by industry. This was followed by the development of higher
level languages, that are compiled to MapReduce programs, such as Pig [137] from
Yahoo!, Jaql [23] from IBM and Hive [170] from Facebook. The open source Apache
stack produced a striving ecosystem around Hadoop with projects such as Mahout, a
library for scalable machine learning on MapReduce [13] and further equivalents of Google
technologies such as ZooKeeper [14] (a clone of Chubby [38]) and HBase [12] (a clone of
BigTable [42]).

An intense debate about the advantages and disadvantages of MapReduce with respect
to parallel databases was led [50, 165]. The discussion concluded that the success of
MapReduce was due to four factors. First, MapReduce is cost effective, as it allows for
building datacenters from many low-end servers rather than a few high-end servers, and
it runs robustly in such clusters due to its conservative pull-model for data exchange. A
second success factor is the storage and schema independence of MapReduce, it can read
from the huge variety of data sources that make up today’s production systems. Third,
it is very effective for “read-once” tasks such as web indexing, as it does not require

1transactions that provide atomicity, consistency, isolation and durability
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importing the data before processing it (in contrast to relational databases). Finally,
MapReduce allows to express complex transformations (e.g. information extraction tasks)
much more easily than SQL. Unfortunately, MapReduce still has serious deficiencies,
e.g. inefficient performance when executing iterative computations and no support for
asynchronicity, which make it suboptimal for certain complex applications such as machine
learning and graph processing. This has led to a variety of specialized systems for these
tasks, for example Pregel [120], Giraph [10] and Pegasus [99] for graph processing and
GraphLab [117], Parameter Server [114], Terascale Learner [1], h20 [82], SystemML [76]
and Cumulon [89] for machine learning. While these systems perform extremely well in
their specialized area, their specialization comes with a price: pre- and postprocessing
of the data, which often requires relational operations, has to be done outside of the
specialized system, which leads to processing pipelines that involve many different systems.
These pipelines are difficult to operate as they require a scattered codebase and data
movement between the individual systems.

In the last years, a new breed of massively parallel dataflow systems emerged, which
finally brings together the world of parallel databases with MapReduce-like systems.
These systems provide declarative query languages [4], operators for combining multiple
datasets [18] and automatic query optimization [91] from parallel databases together
with the storage-independence, scalability and programming flexibility of MapReduce
systems. They are able to effectively execute relational operations at scale [15], and due
to dedicated support for iterative computations, can emulate many of the specialized
systems [62, 177, 180]. Microsoft runs large parts of its infrastructure on a stack of
massively parallel dataflow systems consisting of Dryad [92], DryadLINQ [183] and
SCOPE [40]. The most prominent examples for massively parallel dataflow systems in
the research world are Apache Flink (formerly Stratosphere [2]), Apache Spark [186] and
Hyracks/AsterixDB [7, 32]. The majority of the work in this thesis focuses on scaling
out data mining algorithms in massively parallel, MapReduce-like dataflow systems. We
present research on scaling out data mining in classical systems such as MapReduce and
parallel databases, as well as in novel systems like Apache Flink and Apache Spark.

2.2 Distributed Shared-Nothing File Systems

The data analysis systems discussed in this thesis all process large datasets stored
in distributed file systems modeled after the Google File System (GFS) [75]. Google
developed GFS as storage platform for their web search engine, where it handled hundreds
of terabytes of data in 2003 already. GFS is a scalable, shared-nothing file system for
large distributed data-intensive applications built on the following design decisions. The
main goal is to achieve high fault tolerance, as GFS is aimed at clusters consisting of
hundreds or thousands of commodity machines, where high failure rates are common.
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Furthermore, the file system is supposed to store large, multi-gigabyte files. The write
workload consists of large sequential writes that append only to existing data. Random
updates of existing files are not possible. This pattern matches web crawling and indexing
scenarios very well. The read workload is expected to be mostly large streaming reads
with a few small random reads. The design clearly favors high bandwidth for bulk reads
over low latency access to individual files.

Master
(filesystem metadata)

Chunkserver
(file chunks)

Chunkserver
(file chunks) ...

Client
(chunk handle, locations)

(filename)

(chunk handle, range)

(actual chunk data)

(chunkserver state)(instructions)

Figure 2.1: Communication patterns in GFS as depicted in [75].

GFS is implemented with a master-slave architecture. The master server orchestrates
the file operations and stores the metadata of the file system. It maintains a replicated
write-ahead log of critical metadata changes in order to guarantee fault tolerance. The
files are to store are divided into so-called chunks with a typical size of several dozen
megabytes. The slaves, called chunk servers, store replicas of the chunks (the actual file
data) on their local disks. The master ensures that there is always a given number of
replicas of each chunk stored in the file system. Clients of the file system communicate
with the master for metadata only, e.g. for querying the location of the chunks belonging
to a certain file (c.f. Figure 2.1). The master redirects them to the actual chunk servers,
which contain the replica and the client directly conducts reads and writes of the chunks
on the corresponding chunk server. The master regularly sends out so-called heartbeat
messages to the chunk servers, to which these answer with their current state. The
master piggybacks control messages on the heartbeat, e.g. to re-replicate chunks in case
of machine failures or data corruption. A popular open source implementation of GFS
is the Hadoop Distributed File System (HDFS) [11], which we use for our experiments
throughout this thesis.

2.3 Abstractions for Massively Parallel Dataflow Processing

Next, we introduce the dominant paradigms for conducting parallel computations on
data stored in distributed file systems. The majority of algorithm implementations in
this thesis will use one of these abstractions.
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2.3.1 MapReduce

MapReduce is a programming model as well as a paradigm for distributed data processing,
based on two second-order functions called map and reduce [49]. The data model of
MapReduce consists of simple key-value tuples. A MapReduce program is expressed in
the form of two user-defind first-order functions fm and fr. The function fm takes a
tuple with key of type k1 and value of type v1 and transforms this tuple to zero, one or
more tuples of type k2 for the key and v2 for the value:

fm : (k1, v1)→ list(k2, v2)

The function fr takes a key of type k2 and a list of values of type v2 as input and
computes another list of values of type v2 as output:

fr : (k2, list(v2))→ list(v2)

A MapReduce system applies the user-defined first-order functions fm and fr in parallel to
the input using the system-defined second-order functions map and reduce as illustrated
in Figure 2.2. In the so-called map-phase, the system applies the function fm individually
to all key-value tuples from the input data. This phase is followed by the shuffle-phase,
where the system groups all tuples produced by the map-phase by the key k2. In the
final reduce-phase, the system applies the function fr to all the groups produced in the
shuffle-phase. This execution style amends itself to massive parallelism. The maximum
degree of parallelism in the map-phase is equal to the number of input tuples, as fm
can be applied to every input tuple in isolation. The maximum degree of parallelism in
the reduce-phase is equal to the number of distinct keys of the tuples produced in the
map-phase.

map shuffle reducefm fr

Figure 2.2: Dataflow of key-value tuples in MapReduce.

The architecture of a distributed MapReduce system is complementary to the architecture
of the underlying distributed file system (c.f., Section 2.2). Again, a master-slave
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architecture is used, where the master orchestrates the system by scheduling the individual
map and reduce tasks on the slave machines, by monitoring their progress and reacting to
failures [49,179]. The input to a MapReduce program typically consists of key-value tuples
(typically serialized to a binary representation) that are physically stored in many chunks
on the distributed file system. For the execution of a particular job, the master first
decides which slave machines should participate and transfers the compiled MapReduce
program to these machines. Next, the input data is logically divided into fixed-size input
splits. In order to minimize data movement over the network, the master tries to exploit
locality by scheduling map processing tasks for input splits to the machines that already
store a local copy of the chunk containing the split.

map worker

fm
partition,

spill to disk

merge 
on disk

buffer in
memory

input
split

reduce worker

output

merge, sort
remote
reads

fr

Figure 2.3: Distributed execution of a MapReduce program.

The slaves execute their assigned map and reduce tasks as follows (c.f. Figure 2.3). Every
map worker reads its designated input splits and deserializes the contained key-value
pairs of type (k1, v1). Next, the worker passes each pair to the user-defined function
fm and stores the key-value pairs of type (k2, v2) emitted by fm in memory. These
buffered output pairs are partitioned on k2 according to the number of reduce workers
and periodically written to the map worker’s local disk. Once a map worker finishes
processing an input split, it reports this progress to the master, which notifies the reduce
workers. Subsequently, the reduce workers fetch the partitions of the map output intended
for them via remote reads from the map workers. Finally, each reduce worker sorts all
fetched partitions to group them by the key k2 as required for the user-defined function
fr. Next, each reduce worker iterates over the grouped key-value pairs, invokes fr for
every group (k2, list(v2)) and appends output of fr to its output file in the distributed
file system. The execution of the MapReduce job finishes once all reduce workers have
finished. Similar to GFS, the master uses a heartbeat to check the workers presence. In
case of failures, MapReduce allows for a remarkibly simple way of guaranteeing fault
tolerance. The master only needs to reschedule the tasks assigned to failed map or reduce
workers to other machines in the cluster. The correctness of the output of a deterministic
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Figure 2.4: Second-order functions forming the Pact operators.

MapReduce program in presence of failures is guaranteed by using atomic commits for
the intermediate map and reduce outputs to avoid data corruption.

2.3.2 Parallelization Contracts & Iterative Dataflows

Parallelization Contracts (Pacts) [18] are the core abstraction of the parallel data pro-
cessing system Apache Flink, formerly known as Stratosphere. Flink offers in-situ data
processing, a wide variety of operators, treats user defined functions as first-class citizens,
automatically optimizes programs and has dedicated support for iterative computations.
In this section, we focus on a discussion of its core concepts. We redirect the interested
reader to [2] for an exhaustive description of Flink’s complete software stack. Pact
extends the MapReduce paradigm (c.f. Section 2.3.1) and allows for the specification of
parallelizable transformations on sets using the following data and programming model.
A dataset D is an unordered collection D = {r1, . . . , rn} of n records. Every record ri
comprises an ordered tuple of m values ri = {v1, . . . , vm}. The system is agnostic of both,
the semantics and type of the individual values vj . Their interpretation is left to the
user-defined functions supplied inside a Pact-program. The Pact programming model
generalizes the MapReduce model: a Pact operator combines a second-order function
with a user-defined first-order function (UDF) [3]. Furthermore, the second-order function
might require the user to specify key fields of the records to process. A UDF contains
arbitrary code and can output an arbitrary number of records. The UDF can modify,
remove and add values in the records it processes. The system-provided second-order
function dictates the partitioning of the dataset to produce, and applies its associated
UDF to the groups resulting from the partitioning. These groups can than be processed
in a data-parallel fashion by many independent tasks. The executing system derives the
parallelization strategies from the partitioning semantics of its provided second-order
functions, the Pact operators. Pact inherits the two unary operators map and reduce
from the MapReduce paradigm (c.f., Section 2.3.1). Both operate on a single input
dataset D as follows. The map operator (c.f. Figure 2.4a) applies the user-defined first
order function f to all individual records r1, . . . , rn from D:
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map : D × f →
{
f(r1), . . . , f(rn)

}
The reduce operator (c.f. Figure 2.4b) works on a user-defined keyspace K over the
attributes of D with t distinct keys. The active domain of K is {k1, . . . , kt}, and r(k)
denotes that r.K = k. The user defined function f takes a group of records with the
same key as input here:

reduce : D × f ×K →
{
f(r

(k1)
11

, . . . , r
(k1)
n1 ), . . . , f(r

(kt)
1t

, . . . , r
(kt)
nt )

}
Additionally, Pact defines three binary operators that work on two input datasets, to
which we refer to as L = {l1, . . . , lp} and R = {r1, . . . , rq}. The dataset L contains p
records, and the dataset R consists of q records. Note that the UDF f expects two inputs
for these operators. The cross operator (c.f. Figure 2.4b) builds the cartesian product
between all records of L and R and invokes the user-defined first order function f on
every single resulting pair of records:

cross : L×R× f →
{
f(l1, r1), f(l1, r2), . . . , f(lp, rq)

}
The join operator (c.f. Figure 2.4d) performs an equi-join between L and R, using the
key spaces K and Q. Next, it applies the user-defined first-order function f to all pairs
of records in the join result:

join : L×R×K ×Q× f →
{
{f(l, r) | l.K = r.Q}

}
The cogroup operator (c.f. Figure 2.4e) is a binary extension of the reduce operator.
Records from the datasets L and R are grouped using the key spaces K and Q. Afterwards,
every pair of groups from L and R with the same grouping key w from the combined
active domain of K and Q is fed to the user-defined first order function f :

cogroup : L×R×K×Q×f →
{
f(l

(w1)
11

, . . . , l
(w1)
n1 , r

(w1)
11

, . . . , r
(w1)
n1 ), . . . , l

(wt)
1t

, . . . , l
(wt)
nt , r

(wt)
1t

, . . . , r
(wt)
nt )

}
A Pact program consists of a directed aclycic graph (DAG), where Pact operators
and their corresponding user-defined first-order functions form the vertices and edges
represent exchange of data between operators. The Flink optimizer transforms such a
Pact program into a low-level job graph of the distributed processing engine Nephele [175]
which executes in parallel on a cluster. Flink’s optimizer is inspired by optimizers
proposed for parallel database systems, and analogously bases its optimizations on logical
plan equivalences, cost models and reasoning about interesting properties [80, 158]. The
optimization of Pact programs is more difficult than in the relational case for several
reasons. Most importantly, the operators do not have fully specified semantics due to
the execution of user-defined first-order functions. The unknown UDFs also complicate
deriving estimates for intermediate result sizes. A further challenge is that there is
no pre-defined schema present in the Pact programming model. The optimization is
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conducted in two phases: a logical plan rewriting phase is followed by the selection of a
physical execution plan. During the logical rewriting, the optimizer generates equivalent
plans by reordering operators. The reordering is conditioned on conflicting value accesses
and preservation of group cardinalities [90, 91]. The subsequent physical optimization
follows a cost-based approach by picking strategies for data shipping and local operator
execution using estimated execution costs [18]. Examples for such strategies are broadcast-
or re-partition-based data shipping and sort- or hash-based join execution. During the
selection process, the optimizer keeps track of interesting properties such as sorting,
grouping and partitioning.
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Figure 2.5: Optimization example in Pact.

Figure 2.5a shows an example of a logical plan for which a physical plan must be chosen.
The example program applies two subsequent map operations to an input dataset L,
joins the outcome with another input R and finally aggregates the join result with a
reduce operation. Figures 2.5b and 2.5c show two possible physical plans for executing
the program. Both plans connect the map operators with a local-forward, to run them
subsequently on the same machine, which is the most efficient way to chain tuple-at-a-time
operations, such as maps. The main difference between the two physical plans is the
execution strategy of the join. Plan A broadcasts R and uses it as the build side of a
hash-join. Therefore, no re-partitioning of L is necessary in order to execute the join.
The result of the join must be re-partitioned and transferred over the network in order
to execute the reduce operator2. This plan makes sense when both R and the join result
are very small. Plan B is only valid if the reduce operation groups on the join key. It
re-partitions both R and the output of the map operations applied to L, sorts them
and applies a merge-join afterwards. This choice enables the local execution of the final
reduce operator, which re-uses the partitioning and sorting of the join result. Plan B

2assuming that the join result is not incidentally partitioned on the grouping key already
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Algorithm 2: Bulk-iterative computation.

1 while ¬c(S(t), f(S(t)) )

2 S(t+1) ← f(S(t))

makes sense when the join result is very huge. The optimal plan choice depends on the
size and cardinality of the inputs, as well as on the intermediate results sizes produced
by the UDFs.

A distinctive feature of Flink is its special support for embedding iterative computations
in a dataflow. Efficiently executing such computations is crucial for use cases such as
machine learning and graph processing. In general, an iterative computation starts with
an initial state s(0) and aims to find the fixpoint s∗ of the iterated step function f , such
that s∗ = f(s∗). Flink integrates iterative computations by allowing the user to mark a
part of the DAG as iterative [61,62]. The system then repeatedly executes this part of
the DAG by forwarding the output of its last operator to its first operator. Flink provides
two ways to execute these iterative parts of a Pact program. Bulk iterations apply the
step function f (which can be an arbitrary Pact program) of the iterative computation
to re-compute the intermediate result, represented by a dataset S(t+1) in iteration t as a
whole (c.f. Algorithm 2). Bulk iterations stop execution once a termination criterion c is
satisfied. In many cases however, parts of the intermediate state converge at different
speeds. An example are single-source shortest path computations in large graphs, where
the shortest paths to vertices close to the source vertex are typically found much earlier
than those of vertices far away from the source. In such cases, the system would waste
resources by always re-computing the whole intermediate state S(t), which includes the
parts that do not change anymore. To alleviate this issue, Flink offers delta iterations.
Delta iterations model an iterative computation with two datasets (c.f. Algorithm 3)
and a special step function. The solution set S(t) holds the current intermediate result,
while the working set W (t) holds algorithm-specific data to compute updates to the
solution. During a delta iteration the system uses the specialized step function called ∆
which consumes the current solution S(t) as well as the current working set W (t). This ∆
function then computes a set of updates D(t+1) to the solution as well as the next working
set W (t+1) (c.f. line 2). The system uses D(t+1) to selectively update the solution set S(t)

and thereby forms the next intermediate solution S(t+1) (c.f., line 3). A delta iteration
automatically terminates once the working set W (t) becomes empty (c.f. line 1). It is
important to note that Flink’s optimizer is aware of the iterative parts of Pact programs
and can apply specialized optimizations, e.g. caching of the static parts of iterative Pact
programs.

A wide variety of applications have been built on top of the Pact model. Examples include
Meteor, an operator model with application-specific functions as first-class operators that
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Algorithm 3: Delta-iterative computation.

1 while W (t) 6= ∅
2 (D(t+1),W (t+1))← ∆(S(t),W (t))

3 S(t+1) ← S(t) ∪D

allows for operator semantics to be evaluated and exploited for optimization at compile
time [86]. The high level language Pig as well as the deeply embedded data processing
language Emma have been compiled to Pacts [4,95]. Furthermore, Pact’s iteration model
has been shown to optimize for the asymmetry in the convergence of graph processing
algorithms [94].

2.3.3 Resilient Distributed Datasets

The third abstraction for parallel processing we introduce are Resilient Distributed
Datasets (RDDs), the core abstraction behind the distributed data processing system
Apache Spark [186,187]. RDDs have been motivated by the growing need to efficiently
execute applications that re-use intermediate results across multiple operations. Prime
examples for such applications are interactive ad-hoc data analysis and iterative algorithms
that occur in domains such as machine learning and graph processing. MapReduce-based
systems typically show bad performance in these kinds of applications, as they materialize
the intermediate data between subsqeuent MapReduce jobs in the distributed filesystem,
which leads to large I/O overheads that dominate the execution time.

RDDs are a distributed shared memory abstraction3 for MapReduce-like computations
on large clusters in a fault tolerant way. Despite of their shared memory character, RDDs
are based on coarse-grained transformations rather than fine-grained updates, in order to
allow for simple and effective fault tolerance. Analogously to Pacts (c.f. Section 2.3.2)
and MapReduce (c.f. Section 2.3.2), users conduct parallel computations using a set
of high-level operators and user-defined functions. The system automatically handles
parallelization, work distribution and fault tolerance. RDDs are fault tolerant, parallel
data structures which allow users to explicity persist intermediate results in memory
and control the partitioning of their data for placement optimization. An RDD is an
immutable, read-only, partitioned collection of records, created through deterministic
operations, either from data on stable storage or by transforming other RDDs. RDDs allow
the users to manipulate the data through a rich set of transformations that are mostly
analogous to the Pact operators 2.3.2 (e.g., map, reduce, cogroup). The programming

3We characterize RDDs as a shared memory abstraction because they provide bulk transformations
over datasets partitioned over the memory of a cluster.
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interface is inspired by the functional API of DryadLINQ [183]. These transformations
again apply the same operation to all elements (or groups of elements) in parallel.
The main purpose of RDDs is to enable an order of magnitude faster execution times
(compared to disk based MapReduce systems like Hadoop [11]) by re-using intermediate
results across multiple operations. Analogous to Pacts, RDDs are an abstraction for
general distributed processing and subsume specialized systems such as the Pregel graph
processing system [120]. The immutability of RDDs imposes a rigorous restriction in
contrast to traditional distributed shared memory abstractions: RDDs only make sense
for applications doing bulk writes, as efficient random writes are not possible by design.
This choice offers lots of advantages however: it allows for straggler mitigation through
speculative execution of transformations on partitions of RDDs, it enables bulk-reads to
gracefully go out-of-core in case of memory pressure and allows scheduling based on data
locality.

The main advantage of the immutability in the design of RDDs is that it enables a novel,
efficient fault tolerance scheme called lineage-based recovery. As RDDs are based on
coarse-grained bulk transformations and not on fine-grained element-wise updates, they
allow the system to log the transformations (the lineage of the data), thereby freeing it
from having to replicate the data itself. In the system, the lineage is represented as a
graph, where the partitions of the individual RDDs are vertices, and edges represent the
data dependencies of the transformations between RDDs. Spark distinguishes between
two different kinds of dependencies between RDDs: Narrow dependencies have a one-
to-one relation between the parent and the child RDD (the result of a transformation),
narrow dependencies occur through map transformations or joins on co-partitioned data.
In case of the loss a partition of the child RDD, only a single partition of the parent
RDD must be re-computed. This allows for very inexpensive recovery in case of failures.
Wide dependencies, on the contrary, occur when there is an all-to-all relation between
the partitions of the parent and child RDDs of a transformation (e.g. in transformations
that require the re-partitioning of an RDD). Recovery in that case is expensive, as the
recovery of a single lost partition of the child RDD requires a full re-computation of all
partitions of the parent RDD. Spark usually materializes intermediate data for operations
with wide dependencies to simplify fault tolerance. Additionally, Spark offers support for
checkpointing an RDD’s data which is more efficient for special applications with very
long lineage chains such as iterative graph computations.

Spark uses a master/slave architecture for execution. A driver program connects to
the master and to a cluster of workers. Next, the driver program issues instructions to
create and transform RDDs. The execution of the issued transformations is deferred
until the program requests a so-called action, an operation that either sends data to
the driver program (e.g. a count) or materializes an RDD (e.g. to write out results).
The driver tracks the lineage, while the workers store and process partitioned RDDs.
Spark’s scheduler is aware of the locality of RDD partitions and its scheduling decisions

22



2.3 Abstractions for Massively Parallel Dataflow Processing

take into consideration whether partitions are pinned in memory or not. Spark divides
the execution of a program into so-called stages. Every stage contains all pipelined
transformations with narrow dependencies until a transformation with wide dependencies
is encountered. The system will then execute these transformations and materialize the
result of the wide dependency operation as last part of the stage.

The simplicity of the RDD abstraction allowed the Spark community to build lightweight
libraries on top of their system, such as Spark Streaming [188], a mini-batch oriented
stream processing engine, GraphX [180] for distributed graph processing, a SQL engine
called SparkSQL [15] and MLlib [126], a library for distributed machine learning. RDDs
and Pacts are very related in the abstraction which they provide. The main difference is
that Pacts take an operator centric view and focus on the execution of query-like DAGs
(which provides more optimization opportunities), while RDDs provide a data centric
view and focus on program rather than query execution (e.g. including control flow).

2.3.4 Vertex-Centric Graph Processing

The last approach to massively parallel data processing which we introduce is vertex-
centric graph processing, as proposed in the Google Pregel system [120]. In contrast to
general data flow system, Pregel is a system specialized for a single use case, namely
graph processing. We will however see that the computational model proposed in Pregel
can easily be emulated by general data flow systems, which make Pregel-like systems a
valid target of research in this thesis.

Pregel defines a computational model for large-scale graph processing, where a program
consists of a sequence of iterations, in which vertices get messages from the previous
iteration, modify their own state and send messages to other vertices. Pregel enables
efficient, scalable and fault-tolerant graph processing on clusters of commodity computers.
A main motivation for the development of Pregel was the high overhead incurred for
iterations by MapReduce-like systems. Its computational model is heavily inspired by
‘Bulk Synchronous Processing’ (BSP), a general model for parallel computations proposed
by Leslie Valiant [174]. Analogous to BSP, iterations are called supersteps in vertex
centric graph processing. During a superstep, the system invokes a UDF for every vertex
(conceptually in parallel). The UDF defines the behavior of a vertex v in superstep s;
it receives messages sent to v in superstep s− 1, can modify state of v, as well as the
graph topology, and typically sends messages to other vertices, which will be (logically)
delivered in the subsequent superstep s+ 1. The execution is synchronized via a global
superstep barrier. Pregel again uses a master-slave architecture. The execution of a
vertex-centric program proceeds as follows. The graph is by default hash-partitioned on
the vertex id, such that the vertex and its whole adjacency list live in the same partition.
The master assigns these partitions to the workers which load the portions of the graph
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Figure 2.6: Vertex centric graph processing as iterative dataflow plan in Pact.

in parallel into their local memory. Next, the master coordinates the supersteps. During
a superstep, the workers invoke the vertex update UDF on their local partitions and
asynchronously deliver messages between themselves. A superstep is synchronized via
a global barrier (typically implemented using a distributed locking service [38]). The
execution continues as long as there are active vertices or messages to be delivered.
Finally, the master instructs the workers to save their vertex states to the DFS and the
program terminates. Pregel achieves fault tolerance via checkpointing of vertex values,
edge values and incoming messages. Failures are detected by checking timeouts while
pinging the participating machines. In case of failure, the computation is restarted from
the last checkpoint.

The popularity and ease of the computational model in Pregel has lead to many implemen-
tations of the system [10, 152, 153]. Furthermore, researchers have shown that Pregel-like
programs easily execute in general dataflow systems that offer an abstraction for the
efficient execution of iterative programs [36,62,177,180]. Figure 2.6 exemplarily illustrates
how Flink models Pregel-like programs using its delta iteration abstraction (c.f., Sec-
tion 2.3.2). The input to the Pact-program is threefold: the initial states of the vertices
which form the solution set of the iteration, the initial messages (the workset of the delta
iteration) as well as the edges of the graph that we process. In this plan, we divide the
vertex-centric UDF into two Pact-UDFs. First, we compute a pontential new state for
every vertex by aggregating the messages with a reduce-operator (the ‘vertex update
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function’). Next, we join the candidate update with the current vertex state using a
cogroup-operator and update it if has changed. Finally, we join the updated vertex states
with their corresponding adjacent edges using a join-operator and run the user-specified
‘messaging function’ (the second part of the Pregel-UDF). This will produce a new set of
messages (the workset of the delta iteration) and the system runs the next iteration. The
computation terminates once no more new messages are produced (meaning the workset
becomes empty).

2.4 Exemplary Data Mining Use Cases And Their Mathematical Foundations

We move from the system-specific background of the thesis to the algorithmic background
for the data mining tasks, which we scale to large datasets in the remainder. We
introduce the mathematical background for the two main use cases discussed in the thesis:
collaborative filtering and network centrality.

2.4.1 Collaborative Filtering

Recommender systems are ubiquitous in modern internet platforms, e.g. in recommending
products in online shops, suggesting friends in social networks or proposing similar videos
on video sharing websites. There are two different general approaches for generating
recommendations for users that interact with some kind of items. In content-based filtering,
we build content-related profiles for users and items. These profiles might for example be
based on product attributes or user demographics. The next step is to associate users
with matching products, based on the profiles. The content-based approach has the huge
disadvantage that it requires a deep understanding of the domain, and potentially a lof
of manual effort to build the profiles. The alternative approach (which will be one of
the main applications of this thesis) is so-called collaborative filtering [77], which bases
its recommendations solely on observed historical interactions between users and items.
Thereby, collaborative filtering is independent of the domain for which it is applied.

Collaborative filtering is a form of dyadic learning: we are given a set of interactions M
between a set of users C and a set of items P . M is typcially represented as a matrix from
users (rows) to items (columns). An entry mij denotes that user i interacted with item j
in the past. There exist two different kinds of interaction data in collaborative filtering
scenarios [106]. In the case of explicit feedback, the users explicitly assign numerical
scores to items which they prefer (e.g. by rating movies with 1 to 5 stars). In this case,
the matrix representing M is only partially defined, as only the cells that hold observed
ratings are known. In the case of implicit feedback, the users’ behavior is passively
observed and the entries in M typically holds counts of observed behavior (e.g. user i
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visited website of item j three times). Implicit feedback produces a completely defined
matrix, yet the confidence in non-observed interactions (the zero entries) is very low,
due to lack of negative feedback. It is non-obvious whether users did not interact with
an item because they did not like that item or whether they did simply not have the
chance to interact with it yet. Furthermore, it is important to note that real world
interaction datasets are typically extremely sparse, as most users only interact with a
tiny fraction of the available items (e.g., less than 0.1% of entries are known in [182]).
The goal in collaborative filtering is to suggest new items for users which they might
enjoy. Formally, collaborative filtering is typically cast as a supervised learning problem,
where the task is to accurately predict future interactions. There are many ways to
evaluate the quality of a recommender, e.g. by the root mean squared error (RMSE) to
held-out ratings [21], the mean average precision in predicting the top k items of users,
or the users personalized ranking of the items [147]. There are two main algorithmic
families in collaborative filtering, whose scale-out will be in the focus of this thesis. The
similarity-based neighborhood methods [54, 77, 116, 149, 154] compute relationships (in
terms of interaction behavior) between either users or items, and subsequently derive
their predictions from these relationships. The most prominent approach from this family
is item-based collaborative filtering [116, 154]. The idea is to first compute a matrix S
which holds pairwise similarities among item interaction vectors (the columns of M).
Typical choices for measuring the similarity among item vectors are variations of cosine,
pearson correlation or pointwise mutual information [164]. A simple way to estimate an
unobserved rating m̂ij of user i towards item j is by using a weighted sum over similarities
and past ratings (c.f., Equation 2.1). Let hi denote the set of all items in the interaction
history of user i. Then we estimate the rating of user i towards item j as follows. We
multiply the similarity sjk of j towards each known item k with the rating mik that
user i gave for item k. We finally normalize their sum by the sum of the absolute values
of the similarities:

m̂ij =

∑
k∈hi sjkmik∑
k∈hi |sjk|

(2.1)

We find the top k items to recommend for a particular user by predicting the ratings
for all her unknown items and retaining the k items with the highest estimated rating.
Item-based collaborative filtering is very popular because it is a simple approach and
empirically works well with a slightly outdated version of the similarity matrix S, due to
the static nature of the relationship between items. This allows to leverage a pre-computed
version of S for fast prediction computations.

argmin
U,V

∑
(i,j)∈M

(mij − uTi vj)2 + λ(‖ui‖2 + ‖vj‖2) (2.2)

The second prominent approach to collaborative filtering are latent factor models [88,106,
189]. The idea is to characterize both users and items by a set of automatically derived
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latent variables. These variables can correspond to distinguishing features (e.g. the genre
of movies), but will not necessarily be interpretable by humans. Latent factor models
project users and items onto a joint latent factor space of low rank f , such that closeness
in that space denotes similarity and high preference. We aim to learn a vector ui ∈ Rf for
every user i, as well as a vector vj ∈ Rf for every item j, such that their inner product
models the interaction between the user and the item. This inner product allows us to
estimate the strength of unobserved interactions m̂ij = uTi vj . Mathematically, this leads
to a matrix factorization problem: Find a matrix of user vectors U and a matrix of item
vectors V , such that their product approximates observed parts of M and generalizes well
to unseen parts. This problem is closely related to singular value decomposition, with
the difference that we operate on a partially defined matrix M in explicit feedback cases.
A standard technique is to choose U and V such that they minimize the regularized
empirical squared error of the predicted interaction values to the observed values in M .
A common way to formulate this as an optimization problem is shown in Equation 2.2,
where λ denotes a hyperparameter for weighting the regularization term. This model is
easily extendable to incorporate biases for users and items, temporal dynamics [106] or
implicit feedback data with varying confidence levels [88].

2.4.2 First-Order Optimization Methods for Latent Factor Models

In this section, we introduce mathematical techniques for learning latent factor models.
A popular way to learn model parameters p that minimize a differentiable error function
E(p) are gradient descent methods [24]. The idea is to iteratively take steps into the
negative direction of E’s gradient: p(t+1) = p(t) − η∇E(p(t)). This approach has the
drawback that a single parameter update requires a full pass through the whole dataset.
Online versions of gradient descent have been proposed to mitigate this problem when
the error function is comprised of a sum of error terms for independent observations in
the dataset: E(p) =

∑
iEi(p). The resulting online version, called stochastic gradient

descent (SGD), updates the model parameters based on a single observation at a time:
p(t+1) = p(t) − η∇Ei(p(t)), and converges much faster in many cases. SGD is the most
popular method for latent factor models [68,106]. Its application to Equation 2.2 leads to
the simple learning algorithm depicted in Algorithm 4. We randomly initialize the model
parameters U and V (c.f. line 1) and loop through the dataset in random order until
convergence (c.f. lines 2 & 3). For every interaction mij between a user i and an item j, we
compute the error eij of the prediction uTi vj using the factor vectors corresponding to user
i and item j. Next, we update the factor vectors in the negative direction of the gradient
with respect to the learning rate η and the regularization term λ. The disadvantage of
SGD in its classical form is that it is an inherently sequential algorithm, as the model
parameters change after each data point processed. Therefore, another approach to
learning latent factor models called alternating least squares (ALS) [88, 178, 189] became
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Algorithm 4: Learning latent factor models with SGD.

1 randomly initialize U and V

2 while not converged
3 foreach mij ∈M in random order
4 eij ← mij − uTi vj
5 ui ← ui − η (eijvj − λui)
6 vj ← vj − η (eijui − λvj)

popular. ALS is computationally more expensive than SGD but amends itself to an easy
parallelization scheme. ALS repeatedly keeps one of the unknown matrices (either U or V )
fixed, so that the other one can be optimally re-computed by solving a least squares
problem. ALS then rotates between re-computing the rows of U in one step and the
columns of V in the subsequent step, as shown in Algorithm 5. We update every user
vector ui in parallel by solving a least squares problem (c.f. lines 3 & 4). This least
squares problem involves Vhi which denotes a submatrix of V built from the factor vectors
of all items in the interaction history hi of user i, E which is the k × k identity matrix
where k is the dimensionality of the factor space, and mT

hi
which the i-th row of M

with only the entries retained for items in the interaction history hi of user i. In the
subsequent step in lines 5 & 6, we analogously update all factor vectors for the items in
parallel. Here Uhj denotes a submatrix of U with all factor vectors retained for users
in the interaction history hj of item j, and mhj stands for the j column of M with all
entries kept for users in hj .

Algorithm 5: Learning latent factor models with ALS.

1 randomly initialize V

2 while not converged
3 forall users i do in parallel
4 ui ← (VhiV

T
hi
− λE)−1(Vhim

T
hi

)

5 forall items j do in parallel
6 vj ← (UhjU

T
hj
− λE)−1(Uhjmhj )

It is important to note that these approaches assume a low rank structure in the data
(e.g., interaction vectors of items and users that we wish to be close in latent factor space
must roughly be linear combinations of each other). Furthermore, these methods expose
a large number of hyperparameters (e.g., the number of factors f , the regularization
constant λ, the learning rate η) which have to be determined in order to achieve high
quality results.
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2.4.3 Centralities in Large Networks

A further use case that we study in this thesis concerns finding important objects in
large networks with billions of edges (e.g. social networks or the web graph). This
problem is crucial for ranking purposes, e.g. to rank the results of a web search or to rank
publications in a citation network. In general, a network describes pairwise relationships
among n objects [132], which are represented by a set V of vertices of the network. The
set of edges E represents the pairwise relationships between the vertices. In the following,
we will focus on directed, unweighted networks and represent them mathematically by
their n× n adjacency matrix A, defined as follows:

aij =

{
1 if the edge from vertex i to vertex j exists

0 otherwise

We tackle the centrality problem [30,132], where the goal is to measure the importance of
the individual vertices of a network. The task is to compute a centrality vector x ∈ Rn for
all vertices, where xi denotes a score of importance assigned to vertex i, and higher scores
mean higher importance. We introduce the basic centrality measures from the literature;
later parts of the thesis will describe how to compute these in a scalable manner on large
networks. The simplest form of centrality is degree centrality. The degree ki of a vertex
i is the number edges which are connected to i. In directed networks we differentiate
between the in-degree kini (which equals the number of incoming edges in vertex i) and
the outdegree kouti (which equals the number of outgoing edges from vertex i). A simple
centrality is to use the out-degree: xi =

∑
j aij . In this case, we assume that vertices

with more connections are more important. Unfortunately, degree centrality ignores the
global structure of the network and is easy to trick (e.g. by spammers forming many
random connections in a social network). Spectral centrality measures are more elaborate
by taking the structure of the network into account. Spectral measures define a recursive
notion of centrality: the centrality of a vertex is the sum of the centrality of the vertices
of its neighbors, with a higher contribution for more important vertices. This was first
formulated as eigenvector centrality [31], in which x is equal to the leading eigenvector of
A (c.f., Equation 2.3):

xi =
∑
j

aijxj (2.3) xi = α
∑
j

aijxj + β (2.4) xi = α
∑
j

1

koutj

aijxj + β (2.5)

The problem of this simple formulation is that vertices with no incoming edges get
assigned zero centrality, as well as vertices that are only pointed to by such vertices
(e.g., all vertices that are not in a strongly connected component of the network). This
is especially problematic for acyclic networks such as citation networks which have
no strongly connected component. Katz centrality [101] alleviates this by assigning a
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constant amount β of centrality to every vertex (c.f., Equation 2.4). Katz centrality has
the problem that a vertex gives the same contribution to all its neighbors, regardless of
its out-degree, which is counter-intuitive. PageRank [138] corrects for this by weighing
the contribution to neighbors of a vertex by its out-degree (c.f. Equation 2.5). PageRank
has been instrumental as a ranking measure for Google’s web search results. Note that
special care is necessary for handling vertices with out-degree zero.

An alternative family of centrality measures are path-based measures. Closeness centrality,
for example, measures the importance of a vertex by its geodesic distances to all other
vertices in the network. The geodesic distance dij from vertex i to vertex j is the number of
edges contained in a shortest path from i to j. The closeness centrality of a vertex is defined
as the inverse of the sum of its geodesic distances to all other vertices (c.f., Equation 2.6).
As the classical closeness centrality assigns zero to vertices that cannot reach all other
vertices (through an ∞ term in the denominator), harmonic centrality [27, 29, 30] was
proposed, which only considers reachable vertices (c.f., Equation 2.7). Both of these
centralities measures are hard to scale as they require to solve an all-pairs distance
problem on the vertex set, which is quadratic in the number of vertices. Scalable
substitutes use probabilistic data structures to approximate the neighborhood function
of the graph, which gives the number of reachable vertices for a particular vertex in a
given distance [29,98,139].

xi =
1∑
j dij

(2.6) xi =
1∑

j;dij<∞ dij
(2.7) xi =

∑
s,t∈V ;s 6=t

nist
gst

(2.8)

A second prominent path-based measure is betweeness centrality, which calculates the
importance of a vertex i by comparing the number of geodesic paths nist between any
pair of vertices s and t that go through vertex i with the overall number of geodesic
paths gst between s and t (c.f., Equation 2.8). The intuition here is that we consider a
vertex to be important for the flow of information in a network if it lies on many shortest
paths. Betweeness centrality is again hard to scale to large networks, as it contains
an all-pairs shortest paths problem, which is quadratic in the number of vertices. A
scalable substitue called LineRank [97] has been proposed. The idea behind LineRank
is to compute the steady state probabilities of a random walk on the line graph of the
network and to aggregate the resulting probabilities assigned to edges as a centrality
score for the vertices.

2.4.4 Computation via Generalized Iterative Matrix Vector Multiplication

In this section, we show that a single computational abstraction, namely generalized
iterative matrix vector multiplication, suffices to compute all the centralities introduced
in Section 2.4.3. We describe how spectral measures map to an eigenvector problem,
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which we solve with iterated matrix vector multiplications. Similarly, we detail how
path-based measures are connected to the powers of a matrix defined over a semiring.
We exemplarily detail how a simple algorithm for computing closeness centrality maps to
iterative matrix vector multiplications defined over a semiring.

The computation of spectral centralities reduces to finding the leading eigenvector of
a certain matrix representing the network. In eigenvector centrality, for example, we
compute the leading eigenvector of the adjacency matrix A. For Katz centrality, the
matrix to consider is αA + β1, where alpha and beta control the constant amount of
centrality which we assign to every vertex. The PageRank vector equals to the normalized
leading eigenvector of the matrix αAD−1 + β1, where D is a diagonal matrix holding
the vertices’ out-degrees (dii = kouti ). Analogously, LineRank requires us to compute the
leading eigenvector of the matrix given by α TSTD−1+β1, where TST is a decomposition
of the adjacency matrix of the network’s line graph. A simple way to obtain the leading
eigenvector v1 of a matrix M is the Power Method [78], which computes v1 as the fixpoint
of the following sequence.

x(t+1) =
Mx(t)

‖Mx(t)‖2
This method easily applies to large datasets, as every iteration just conducts a matrix
vector multiplication and scales the resulting vector to unit length. The power method
makes x(t) converge to the leading eigenvector v1 if its corresponding eigenvalue λ1 is
strictly greater than the remaining eigenvalues. As a further condition, we must choose
the initial vector x(0) such that it does not contain a zero component in the direction of
v1. Let c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn be the representation of x(0) in the n-dimensional
eigenbasis of A. As the power method multiplies x(0) by powers of A, it converges to a
multiple of v1 as follows4:

Atx(0) = c1λ
t
1v1 + c2λ2v2 + · · ·+ cnλ

t
nvn

= λt1v1

(
c1 + c2

c1
(λ2λ1 )tv2 + · · ·+ cn

c1
(λnλ1 )tvn

)
Path-based measures such as closeness centrality and harmonic centrality require us to
compute the neighborhood function N(t, i) of a network, which gives the number of
vertices that are reachable from a vertex i within t edge hops [98]. The neighborhood
function immediately allows us to compute the number of vertices Ni(t) whose geodesic
distance to i is t as N(t, i) − N(t − 1, i). The sum of geodesic distances

∑
j dij of all

vertices to vertex i from Equation 2.6 equals the fixed point of the series
∑∞

r=0Ni(t)
which is reached once t becomes equal to the diameter (the longest shortest path) of the
network. Figure 2.7 illustrates a simple algorithm to compute the neighborhood function.
We assign a bitstring of length n to every vertex, where n is the number of vertices in the

4note that all terms ( λi
λ1

)t approach zero, as λn > λi for all eigenvalues λi with i ≥ 2
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network. If bit j is set in the bitstring of a vertex i, it means that vertex i has reached
vertex j via edge traversals. In the first iteration t = 0, every vertex only reached itself.
In every iteration t, each vertex mimicks edge traversals by collecting the bitstrings of its
adjacent neighbors and merging them with its own bitstring via logical OR. Then, the
resulting bitstring of a particular vertex has all the bits sets for vertices that it reaches
with at most t edge traversals. We compute the neighborhood function N(t, i) for a
vertex i as the number of bits set in its bitstring at iteration t. The algorithm converges
once the bitstrings stop changing, which happens when t becomes equal to the diameter
of the network. Interestingly, paths in a network are also connected to powers of a matrix,
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Figure 2.7: Computing the neighborhood function of a network through a series of
bitstring exchanges between its vertices.

similar to eigenvectors. For example, an entry atij in the t-th power of the adjacency
matrix A denotes the number of paths of length t from vertex i to vertex j [110]. It
has been shown that many popular graph algorithms such as shortest paths, connected
components, reachability or transitive closure can be computed by iterative matrix vector
multiplications on matrices defined over certain semirings (E,⊕,⊗). Here E denotes the
set of elements on which we operate and ⊕ and ⊗ are binary operations that fulfill the
algebraic properties of a semiring [79,99].

We exemplarily discuss how to arrive at the algorithm for computing the neighborhood
function depicted in Figure 2.7 by conducting generalized matrix vector multiplications on
matrix defined over a semiring. We choose the semiring ({0, 1}n,∨,∧) which operates on
the set of bitstrings of length n and substitutes addition with logical OR and multiplication
with logical AND. We initialize our vector x(0) ∈ {0, 1}(n×n) such that its i-th component

x
(0)
i contains the bitstring of length n with the i-th bit set. We replace the adjacency

matrix with a matrix A ∈ {0, 1}(n×n×n) such that an entry aij consists of the bitstring 1
of length n with all bits set if an edge from vertex i to vertex j exists or if i = j. The
remaining entries comprise of the bitstring 0 of length n with no bit set. Note that 0
and 1 correspond to the identity elements of our substituted addition and multiplication
operations. Computing the neighborhood function then reduces to computing the fixed
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point of the series x(t+1) = Ax(t) in our chosen semiring. Equation 2.9 shows the update

for a single component x
(t+1)
i of x(t+1) in iteration t+ 1.

x
(t+1)
i = Ai• x

(t) =
n∨
j=1

aij ∧ x(t)j

=
∨

j ∈ adj(i)
1 ∧ x(t)j =

∨
j ∈ adj(i)

x
(t)
j

(2.9)

We obtain xi as the dot product between the i-th row Ai• of A and the vector x(t) holding
the bitstrings of the vertices at iteration t. In our chosen semiring, we compute this dot
product by first applying a logical AND between the bitstrings contained in the entries

aij and their corresponding components x
(t)
j of x(t). Second, we merge the resulting

bitstrings with a logical OR. For non-adjacent neighbors of vertex i, we apply an AND
with 0, which annihilates E as the result is always 0, the identity element of our addition
substitute ∨. Therefore, these terms have no influence on the computation and we safely
ignore them. That leaves only terms that perform a conjunction with 1. We ignore this
conjunction too, as 1 is the identity element of our multiplication substitute ∧. The

remaining operation to obtain x
(t)
i is

∨
j ∈ adj(i) x

(t)
j : merging the bitstrings of its adjacent

neighbors with a logical OR. We have now arrived at exactly the operation depicted in
our algorithm from Figure 2.7, which is what we wanted to show. In this formulation,
the algorithm does not scale because it requires memory quadratic in the number of
the vertices of the network for the bitstrings. Therefore, usually an approximation is
computed where the bitstrings are substitued with a probabilistic datastructure for
estimating set cardinality, e.g., a hyperloglog sketch [27,98,99].

We have seen that generalized iterative matrix vector multiplication is a powerful ab-
straction for computing centralities in networks. Scaling this computation will allow us
to easily execute a wide variety of centrality algorithms on large networks, by simply
substituting the contained matrices and binary operations.
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3.1 Problem Statement

In this chapter, we focus on algorithm-level scalability (c.f., Section 1.1) of our ex-
amplary data mining use cases, collaborative filtering and centralities in large net-
works (c.f., Section 2.4). We discuss the mathematical operations of the algorithms
involved in these cases (c.f., Sections 2.4.2 and 2.4.4), and map them to the parallel pro-
gramming paradigm of distributed data processing systems. We start with collaborative
filtering on MapReduce-based systems, investigate a prototype of a specialized system
for collaborative filtering tasks, and in the end compare graph mining algorithms on
Pregel-like systems and dataflow systems like Apache Flink.

Recommender systems are a prime example for data mining applications that need
scalable technology, as the size of the models produced is typically proportional to the
input cardinality (e.g., the number of users in a social network or the number of items in a
market place). With rapidly growing data sizes, the processing efficiency and scalability of
recommender systems and their underlying computations becomes a major concern [8]. In
a production environment, the offline computations necessary for running a recommender
system must be periodically executed as part of larger analytical workflows and thereby
underly strict time and resource constraints. For economic and operational reasons
it is often undesirable to execute these offline computations on a single machine: this
machine might fail and with growing data sizes constant hardware upgrades might be
necessary to improve the machine’s performance to meet the time constraints. Due to
these disadvantages, a single machine solution can quickly become expensive and hard to
operate. Therefore, it is desirable to run data-intensive, analytical computations in a
parallel and fault-tolerant manner on a large number of commodity machines [49,115].
This makes the execution independent of single machine failures and furthermore allows
for the increase of computational performance by simply adding more machines to the
cluster; thereby obviating the need for constant hardware upgrades to a single machine.
As discussed in Section 1.1, this technical approach requires the re-phrasing of existing
algorithms to enable them to utilize a parallel processing platform.

We re-phrase and scale-out the similarity-based neighborhood methods (c.f., Section 2.4.1).
They have the advantage of being simple and intuitive to understand, as they are directly
inspired by recommendation in everyday life, where we tend to check out things we heard
about from like-minded friends or things that seem similar to what we already like. They

35



3 Scalable Collaborative Filtering & Graph Mining

capture local associations in the data which increases serendipity [151] and they are
necessary as part of ensembles to reach optimal prediction quality [20]. The item-based
variants [154] of the neighborhood methods are highly stable and allow us to compute
recommendations for new users without the need to re-build the model. Due to these
properties, neighborhood methods are popular in industrial use cases [6,47,116,164]. We
improve the scalability of the similarity-based neighborhood methods by re-phrasing the
underlying algorithm for similarity computations to MapReduce. In the next piece of
work, we focus on the second-most popular family of collaborative filtering algorithms:
latent factor models (c.f., Section 2.4.1). We discuss means to efficiently conduct the
computations required on a MapReduce-based system, despite of the limitations of the
MapReduce execution model. We propose low-rank matrix factorization with Alternating
Least Squares, which uses a series of broadcast-joins that can be efficiently executed
with MapReduce. Additionally, we propose a set of changes to the execution model to
mitigate short-comings in MapReduce-based systems.

In cases with extreme model sizes (e.g., low-rank factorizations of datasets containing
hundreds of millions of users), it is beneficiary to investigate alternative system architec-
tures. In such cases, the model size exceeds the memory of an individual machine. This
leads to a set of challenges, e.g. how to partition the model among the participating
machines and how to correctly execute learning algorithms in such a setting. Furthermore
asynchronous learning approaches are desirable as they typically converge faster [22]. To
meet these challenges, we describe “Factorbird”, a prototypical system that leverages
a parameter server architecture [114] for learning large matrix factorization models for
recommendation mining. We furthermore discuss how to build such a system on top of
the existing technology stack of Twitter, the largest micro-blogging service in the world
and present experiments on datasets with dozens of billions of interactions.

In the last part of this chapter, we discuss two algorithms for computing centralities
in large networks (c.f., Section 2.4.3). We map these algorithms to the vertex-centric
programming model of a Pregel-like graph processing system (c.f., Section 2.3.4) as
well as to a general dataflow system. We investigate how well the operations of the
algorithms fit into the vertex-centric paradigm and discuss scalability issues specific to
graph datasets.

3.2 Contributions

In our work on scaling collaborative filtering on MapReduce in Section 3.3, we first
introduce an algorithmic framework that enables scalable neighborhood-based recom-
mendation. Next, we introduce a UDF which allows to implement a variety of similarity
measures in a highly efficient manner in our framework. Furthermore, we describe a
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selective down-sampling technique to handle scaling issues introduced by the heavy tailed
distribution of user interactions commonly encountered in recommendation mining sce-
narios. Subsequently, we show how to execute an iterative low-rank matrix factorization
algorithm with MapReduce in a scalable manner and propose a set of changes to the
MapReduce execution model to increase performance. For the approaches proposed, we
conduct an extensive set of experiments on several publicly available datasets and on a
synthetic dataset generated from the Netflix dataset. We show that our approaches scale
to these datasets containing hundreds of millions to billions of interactions, and therefore
efficiently handle real-world workloads.

We revisit the matrix factorization problem for collaborative filtering in Section 3.4,
where we present ‘Factorbird’, a prototype of a non-dataflow architecture approach for
factorizing large matrices. We design Factorbird to meet the following desiderata: (a)
scalability to tall and wide matrices with dozens of billions of non-zeros, (b) extensibility
to different kinds of models and loss functions as long as they can be optimized using
Stochastic Gradient Descent, and (c) adaptability to both batch and streaming scenarios.
We discuss how to combine lock-free Hogwild!-style learning with a special partitioning
scheme to drastically reduce network traffic and conflicting updates. We furthermore
discuss how to efficiently grid search for hyperparameters at scale. In the end, we present
experiments on a matrix built from a subset of Twitter’s interaction graph, consisting
of more than 38 billion non-zeros and about 200 million rows and columns, which is to
the best of our knowledge the largest matrix on which factorization results have been
reported in the literature.

Lastly, we investigate two network centrality use cases in Section 3.5. During our
investigation, we highlight a scalability bottleneck connected to the memory requirements
in distributed graph processing systems and point out short-comings in the generality of
the vertex-centric abstraction using a spectral centrality measure as example.

3.3 Collaborative Filtering with MapReduce

In the following, we present our work on scaling out the two most popular families of col-
laborative filtering algorithms (c.f., Section 2.4.1), namely similarity-based neighborhood
methods and latent factor models, on MapReduce-based systems.

3.3.1 Distributed Similarity-Based Neighborhood Methods

Recall that collaborative filtering approaches operate on a |C| × |P | matrix M holding
all known interactions between a set of users C and a set of items P (c.f., Section 2.4.1).
A user i is represented by her item interaction history mi•, the i-th row of M . The top
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recommendations for this user correspond to top items selected from a ranking ri of
all items according to how strongly they would be preferred by the user. This ranking
is inferred from patterns found in M . We express the similarity-based neighborhood
approach in terms of linear algebraic operations. Neighborhood-based methods find and
rank items that have been preferred by other users who share parts of the interaction
history mi•. For simplicity, assume that M is a binary matrix with Mij = 1 if a user i
has interacted with an item j and Mij = 0 otherwise. For pairwise comparison between
users, a dot product of rows of M gives the number of items that the corresponding users
have in common. Similarly, a dot product of columns of M gives the number of users
who have interacted with both items corresponding to the columns. When computing
recommendations for a particular user with User-Based Collaborative Filtering [149], first
a search for other users with similar taste is conducted. This translates to multiplying
the matrix M by the user’s interaction history mi•, which results in a ranking of all
users. Secondly, the active user’s preference for an item is estimated by computing the
weighted sum of all other users’ preferences for this item and the corresponding ranking.
In our simple model this translates to multiplying the ranking of all users with MT. This
means the whole approach can be summarized by the following two multiplications:

ri = MT(Mmi•)

To exploit the higher stability of relations among items, a variant of the neighborhood
methods called Item-Based Collaborative Filtering [154] has been proposed, which looks
at items first and weighs their co-occurrences. This approach computes a matrix of
item-to-item similarities and allows for fast recommendations as this matrix does not
have to be re-computed for new users. Modeling the item-based approach with linear
algebra simply results in moving the parentheses in our formula, as MTM gives exactly
the matrix of the item co-occurrences. This shows that both user- and item-based
collaborative filtering share the same fundamental computational model. In the rest of
this section, we focus on the more popular item-based variant.

ri = (MTM)mi•

Algorithm 6: Sequential approach for computing item co-occurrences.

1 foreach item j1:
2 foreach user i who interacted with j1:
3 foreach item j2 that i also interacted with:
4 Sj1j2 = Sj1j2 + 1

The standard sequential approach [116] for computing the item similarity matrix S =
MTM is shown in Algorithm 6. For each item j1, we need to look up each user i who
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interacted with j1. Then we iterate over each other item j2 from i’s interaction history
and record the co-occurrence of j1 and j2. We mathematically express the approach
using three nested summations:

S = MTM =

|P |∑
j1=1

|C|∑
i=1

|P |∑
j2=1

Mj1i ·Mij2

If we were to distribute the computation across several machines on a shared-nothing
cluster, this approach becomes infeasible as it requires random access to both users and
items in its inner loops. Its random access pattern cannot be realized efficiently when
we work on partitioned data. Furthermore, the complexity of the item-based approach
is quadratic in the number of items, as each item has to be compared with every other
item. However, the interaction matrix M is usually very sparse. It is common that only
a small fraction of all cells are known, (e.g., in the datasets we use for our experiments,
this ratio varies from 0.1% to 4.5%), and that the number of non-zero elements in M is
linear in the number of rows of M . This severely limits the number of item pairs to be
compared, as only pairs that share at least one interacting user have to be taken into
consideration. It decreases the complexity of the algorithm to quadratic in the number
of non-zeros in the densest row rather than quadratic in the number of columns. The
cost of the algorithm is expressed as the sum of processing the square of the number of
interactions of each single user. Unfortunately, collaborative filtering datasets share a
property that is common among datasets generated by human interactions: the number
of interactions per user follows a heavy tailed distribution which means that processing a
small number of ‘power users’ dominates the cost of the algorithm. In the following, we
develop a parallelizable formulation of the computation to scale out this approach on a
parallel processing platform. Our algorithm must be able to work with partitioned input
data. Furthermore, it must scale linearly with respect to a growing number of users. We
additionally enable the usage of a wide range of similarity measures and add means to
handle the computational overhead introduced by ‘power users’.

We discuss the step-by-step development of our algorithmic framework. We start with
showing how to conduct distributed item co-occurrence counting for our simple model that
uses binary data. After that, we generalize the approach to non-binary data and enable
the usage of a wide variety of similarity measures through a similarity UDF. Finally,
we discuss means to sparsify the similarity matrix and apply selective down sampling
to achieve linear scalability with a growing number of users. In order to scale out the
similarity computation from Algorithm 6, it needs to be phrased as a parallel algorithm,
to make its runtime speedup proportional to the number of machines in the cluster. This
is not possible with the standard sequential approach, which requires random access to
both the rows and columns of M in the inner loops of Algorithm 6. A way of executing
this multiplication that is better suited to the MapReduce paradigm and has an access
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pattern that is compatible to partitioned data is to re-arrange the loops of Algorithm 6
to the row outer product formulation of matrix multiplication. Because the i-th column
of MT is identical to the i-th row of M , we can compute S with access to the rows of M
only:

S = MTM =

|C|∑
i=1

|P |∑
j1=1

|P |∑
j2=1

MT
j1,i ·Mi,j2 =

|C|∑
i=1

mi•(mi•)
T

Following this finding, we partition M by its rows (the users) and store it in the distributed
file system. Each map function reads a single row of M , computes the row’s outer product
with itself and sends the resulting intermediary matrix row-wise over the network. The
reduce function sums up all partial results, thereby computing a row of S per invocation
(c.f., Algorithm 7). This approach exploits the sparsity of the intermediary outer product
matrices by making the map function only return non-zero entries. At the same time
we apply a combiner (which is identical to the reducer) on the vectors emitted by the
mappers, which reduces the amount of data sent over the network. Additionally, we only
compute the upper triangular half of S, as the resulting similarity matrix is symmetric.

Algorithm 7: Counting item coocurrences with MapReduce.

1 function map(mi•):
2 foreach j1 ∈ mi•
3 c← sparse vector()
4 foreach j2 ∈ mi• with j2 > j1
5 c[j2]← 1
6 emit(j1, c)

7 function combine(j, c1, ..., cn):
8 c←

∑n
k=1 ck

9 emit(j, c)

10 function reduce(j, c1, ..., cn):
11 c←

∑n
k=1 ck

12 emit(j, c)

Real world datasets contain richer representations of the user interactions than a simple
binary encoding. They either consist of explicit feedback like numerical ratings that the
users chose from a predefined scale or of implicit feedback where we count how often a
particular behavior such as a click or a page view was observed (c.f., Section 2.4.1). We
want to choose from a variety of similarity measures for comparing these item interactions,
in order to be able to best capture the relationships inherent in the data. We drop the
assumption that M contains only binary entries and assume that it holds such explicit
or implicit feedback data. We incorporate a wide range of measures for comparing the
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interactions of two items j1 and j2 by integrating a similarity UDF consisting of three
canonical functions into our algorithm. We first adjust each item rating vector via a
function preprocess():

m̂•j1 = udf.preprocess(m•j1 ) m̂•j2 = udf.preprocess(m•j2 )

Next, the second function norm() computes a single number from the preprocessed vector
of an item:

nj1 = udf.norm( m̂•j1 ) nj2 = udf.norm( m̂•j2 )

These preprocessing and norm computations are conducted in an additional single pass
over the data, which starts with MT, applies the two functions and transposes MT

to form M . The next pass over the data is a modification of the previously described
co-occurence counting approach. Instead of summing up co-occurrence counts, we now
compute the dot products of the preprocessed vectors.

dotj1j2 = m̂•j1 · m̂•j2

We provide those together with the numbers we computed via the norm function
to a third function called similarity() which computes a measure-specific similarity
value (c.f., Algorithm 8).

Sj1j2 = udf.similarity( dotj1j2 , nj1 , nj2 )

With this approach we are able to incorporate a wide variety of different similarity
measures which can be re-phrased as a variant of computing a dot product. Note that
this technique preserves the ability to apply a combiner in each pass over the data.
Table 3.1 describes how to express several common similarity measures through our
similarity UDF, including cosine, Pearson correlation and a couple of others evaluated by
Google for recommending communities in its social network Orkut [164].

Example: The Jaccard coefficient between items j1 and j2 (two columns from the
interaction matrix M) is defined as the ratio of the number of users interacting with
both items to the number of users interacting with at least one of those items. We can
easily express it with our similarity UDF, as this example shows:

m•j1 =

1
−
3

 m•j2 =

2
1
5
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Pass 1 : We start by having udf.preprocess binarize the vectors:

m̂•j1 = bin(m•j1) =

1
0
1

 m̂•j2 = bin(m•j2) =

1
1
1


The second function that is invoked for each of the vectors is udf.norm. We let it return
the L1 norm, which gives us the number of non-zero components of each of the binary
vectors:

nj1 = ‖ m̂•j1 ‖1 = 2 nj2 = ‖ m̂•j2 ‖1 = 3

Pass 2 : Finally, the function udf.similarity will be given the dot product between the
preprocessed vectors and their precomputed norms. We have to rearrange the formula of
the Jaccard coefficient so that it computes from the numbers we have at hand:

jaccard(m•j1 ,m•j2) =
|m•j1 ∩m•j2 |
|m•j1 ∪m•j2 |

=
dotj1j2

nj1 + nj2 − dotj1j2
=

2

2 + 3− 2
=

2

3

Algorithm 8: Computing item similarities with MapReduce.

1 function map(m̂i•):
2 foreach (j1, k1) ∈ m̂i•
3 d← sparse vector()
4 foreach (j2, k2) ∈ m̂i• with j2 > j1
5 d[j2]← k1k2
6 emit(j1, d)

7 function combine(j, d1, ..., dn):
8 d←

∑n
k=1 dk

9 emit(j, d)

10 function initialize reducer():
11 n← load norms()

12 function reduce(j1, d1, ..., dn):
13 dots←

∑n
k=1 dk

14 foreach (j2, d) ∈ dots
15 s[j2] = udf.similarity(d, n[j1], n[j2])
16 emit(j1, s)

In order to be able to handle cases with an enormous number of items, we add means to
decrease the density of the similarity matrix S to our final implementation. To get rid of
pairs with near-zero similarity, we allow specifying a similarity threshold, for which we
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evaluate a size constraint to prune lower scoring item pairs early in the process [19] and
eventually remove all entries from S that are smaller than the threshold. This threshold
is data dependent and must be determined experimentally to avoid negative effects on
prediction quality. Furthermore, the prediction quality of the item-based approach is
sufficient if only the top fraction of the similar items is used [154], therefore we add
another MapReduce step that only retains these top similar items per item in a single
pass over the data.

Measure preprocess norm similarity

Cosine
v
‖v‖2 - dotj1j2

Pearson correlation
(v−v̄)
‖v−v̄‖2 - dotj1j2

Euclidean distance - v̂2
√
nj1 − 2 · dotj1j2 + nj2

Common neighbors bin(v) - dotj1j2

Jaccard coefficient bin(v) ‖v̂‖1
dotj1j2

nj1
+nj2

−dotj1j2

Manhattan distance bin(v) ‖v̂‖1 nj1 + nj2 − 2 · dotj1j2
Pointwise Mutual Information bin(v) ‖v̂‖1

dotj1j2

|C| log
dotj1j2

nj1nj2

Salton IDF bin(v) ‖v̂‖1
|C|·dotj1j2

nj1
n2
j2

(− log
nj1

|C| )

Log Odds bin(v) ‖v̂‖1 log

|C|·dotj1j2
nj1

n2
j2

1−
|C|·dotj1j2

nj1
n2
j

Log-likelihood ratio [53] bin(v) ‖v̂‖1
2 ·(H(dotj1j2

, nj2
−dotj1j2

, nj1
−

dotj1j2
, |C|−nj1

−nj2
+dotj1j2

)−
H(nj2

, |C| − nj2
) − H(nj1

, |C| −
nj1

))

Table 3.1: Expressing similarity measures with the proposed similarity UDF.

Recall that our goal is to develop an algorithmic framework that scales linearly with
respect to a growing user base. The cost of the item-based approach is dominated by
the densest rows of M , which correspond to the users with the most interactions. This
cost, which we express as the number of item co-occurrences to consider, is the sum
of the squares of the number of interactions of each user. The number of interactions
per user usually follows a heavy tailed distribution as illustrated in Figure 3.2a which
plots the ratio of users with more than n interactions to the number of interactions n
on a logarithmic scale. Therefore, there exists a small number of ‘power users’ with an
unproportionally high amount of interactions. These drastically increase the runtime,
as the cost produced by them is quadratic with the number of their interactions. If
we only look at the fact whether a user interacted with an item or not, then we would
intuitively not learn very much from a ‘power user’: each additional item she interacts
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with will co-occur with the vast amount of items she already preferred. We would expect
to gain more information from users with less interactions but a highly differentiated
taste. Furthermore, as the relations between items tend to stabilize quickly [151], we
presume that a moderately sized number of observations per item is sufficient to find
its most similar items. Following this rationale, we decided to apply what we call an
interaction-cut : we only partially take the interaction histories of the ‘power users’ into
account. We apply the interaction cut by randomly sampling p interactions from each
power user’s history, thereby limiting the maximum number of interactions per user in
the dataset to p. Note that this sampling is only applied to the small group of ‘power
users’, it does not affect the data contributed by the vast majority of non-‘power users’
in the long tail. Capping the effort per user in this way limits the overall cost of our
approach to |C| p2. We will experimentally verify that a moderately sized p is sufficient
to achieve prediction quality close to that of unsampled data. An optimal value for p is
data dependent and must be determined by hold-out tests.

3.3.2 Experiments

In this section we present the results of a sensitivity analysis for the interaction-cut
and conduct an experimental evaluation of our parallel algorithm on a large dataset.
We empirically verify that the prediction quality achieved by using an interaction cut
quickly reaches the prediction quality achieved with unsampled data. Subsequently, we
analyze the relationship between the size of the interaction-cut, the quality achieved
and the runtime for the similarity computation for our large dataset. After that we
study the effects on the runtime speedup if we add more machines to the cluster as
well as the scaling behavior with a growing user base. Prediction is conducted with
weighted sum estimation enhanced by baseline estimates [105]. In a preprocessing step
that has negligible computation cost, we estimate global user and item biases bi and bj
that describe the tendency to deviate from the average rating µ. This gives us the simple
baseline prediction bij = µ + bi + bj for the rating of a user i to an item j. To finally
predict the rating rij , we use the normalized weighted sum over the user’s ratings to the
k most similar items of j, incorporating the baseline predictions:

rij = bij +

∑
j2∈Sk(j1,i) Sj1j2(Mij2 − bij)∑

j2∈Sk(j1,j2) Sj1j2

Effects of the interaction-cut: We conduct a sensitivity analysis of the effects of the
interaction-cut. We measure the effect on the probability of interaction with an item
and on prediction quality for varying p on the Movielens dataset [129], which consists of
1,000,209 ratings that 6,040 users gave to 3,706 movies. For our first experiment, we rank
the items by their probability of interaction as shown in the plot in the top left corner in
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Figure 3.1: Sensitivity of the probability of interaction with an item to an interaction-cut
of size p in the Movielens dataset.
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Figure 3.2: Skew in interaction datasets and its effect on prediction quality.

Figure 3.1. Next, we apply the interaction-cut by sampling down the ratings of users
whose number of interactions in the training set exceeds p, and repeat this for several
values of p. In the remaining plots of Figure 3.1, we retain the order of the items found
in the unsampled data and plot their probabilities after applying the interaction-cut for
a particular p. We see that for p ≥ 500 there is no observable distortion in the ranking of
the items, which is a hint that this distribution is independent of the data omitted by
sampling down the interactions of the ‘power users’.

In our second experiment, we compute the prediction quality (by mean average error)
achieved by a particular p by randomly splitting the rating data into 80% training and
20% test set based on the number of users. For this experiment, we additionaly use the
Flixster dataset [66], consisting of 8,196,077 ratings from 147,612 users to 48,794 movies.

45



3 Scalable Collaborative Filtering & Graph Mining

Again, we apply the interaction-cut by sampling down the ratings of users whose number
of interactions in the training set exceeds p and use the 80 most similar items per item for
rating prediction. For these small datasets, we conduct the tests on a single machine using
a modified version of Apache Mahout’s [13] GenericItemBasedRecommender. Figure 3.2b
shows the results of our experiments. Note that the right-most data points are equivalent
to the prediction quality of the unsampled dataset. In the Movielens dataset we see that
for p > 400 the prediction quality converges to the prediction quality of the unsampled
data, in the Flixster dataset this happens at p > 750. There is no significant decrease
in the error for incorporating more interactions from the ‘power users’ after that. This
confirms our expectation that we can compute recommendations based on the user data
from the long tail and samples from the ‘power users’ without sacrificing prediction
quality.

Parallel computation with MapReduce: We conduct the following experiments on a
Hadoop cluster with a MapReduce implementation of our approach. The cluster consists
of six machines running Apache Hadoop 0.20.203 [11] with each machine having two
8-core Opteron CPUs, 32 GB memory and four 1 TB disk drives. The experiments for
showing the linear speedup with the number of machines run on Amazon’s computing
infrastructure, where we rent m1.xlarge instances, 64-bit machines with 15 GB memory
and eight virtual cores each. In order to test our approach in a demanding setting,
we use a large ratings dataset [182] which represents a snapshot of the Yahoo! Music
community’s preferences for various songs that were collected between 2002 and 2006.
The data consists of 717,872,016 ratings that 1,823,179 users gave to 136,736 songs. We
use the 699 million training ratings provided in the dataset to compute item similarities
and measure the prediction quality for the remaining 18 million held out ratings. We
compute the 50 most similar items per item with Pearson correlation as similarity measure,
applying a threshold of 0.01. Figure 3.3 shows the results we get for differently sized
interaction cuts. We see that the prediction quality converges for p > 600, similar to
what we previously observed for the smaller datasets. We additionally measure the root
mean squared error and observe the same behavior, the prediction quality converged to
an error of 1.16 here. We see the expected quadratic increase in the runtime for a growing
p, which is weakened by the fact there is a quickly shrinking number of users with more
than p interactions (from Figure 3.2a we know for example that only approximately 9%
of the users have more than 1000 interactions).

The computational overhead introduced by the ‘power users’ is best illustrated when
we compare the numbers for p = 750 and p = 1000: we see a decrease of only 0.0007
in the mean average error, yet the higher value of p accounts for a nearly doubled
runtime. We conclude that we are able to achieve satisfying prediction quality on
this large dataset with a p that is extremely low compared to the overall number
of items and thereby results in a computation cost that is easily manageable even
by our small Hadoop cluster. In order to conduct a comparison to a single machine
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Figure 3.3: Prediction quality and runtime for an interaction-cut of size p in the Yahoo!
Music dataset.

implementation, we experiment with the item-based kNN recommender of MyMediaLite
[70], the GenericItemBasedRecommender provided by Apache Mahout [13] and the
ItemRecommender from LensKit [58]. Unfortunately, not one of these is able to complete
the computation due to problems with memory, although we run them on a machine
which had 48 GB of RAM available. Based on our findings, we choose to set p to 600 for
the following scalability experiments.
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Figure 3.4: Scale-out experiments with MapReduce on the Yahoo! Music dataset.

Linear speedup with the number of machines: The major promise of parallel
processing platforms is seamless horizontal scale-out by increasing the number of machines
in the cluster. This requires the computation speedup to be proportional to the number
of machines. To experimentally evaluate this property of our algorithm, we use the
ElasticMapReduce computing infrastructure provided by Amazon, which allows us to
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run our algorithm on a customly sized Hadoop cluster. We repeatedly run the similarity
computation with an increasing number of cluster machines. Figure 3.4a shows the linear
speedup as expected by us. With 15 machines, we are able to reduce the runtime of the
similarity computation to less than one hour.

Linear scale with a growing number of users: Finally, we evaluate the scaling
behaviour of our approach in the case of a rapid growth of the number of users. The
Yahoo! Music dataset is already partitioned into several files, with each file containing
approximately 77 million ratings given by 200,000 unique users. In order to simulate the
growth of the user base, we use an increasing number of these files as input to our parallel
algorithm and measure the duration of the similarity computation. Figure 3.4b shows
the algorithm’s runtime when scaling from 200,000 to 1,8 million users. We see a linear
increase in the runtime which confirms the applicability of our approach in scenarios
with enormously growing user bases. As both, the speedup with the number of machines,
as well as the runtime for a growing number of users scale linearly, we can counter such
growth by simply adding more machines to the cluster to keep the computation time
constant.

3.3.3 Distributed Matrix Factorization with Alternating Least Squares

In the following, we move to the second most prominent approach to collaborative filtering:
latent factor models. We discuss how to implement a scalable matrix factorization
approach on MapReduce. We describe how we choose the algorithm to implement and
what techniques we employ to push the performance boundaries of MapReduce-based
systems. Recall that latent factor models compute a low-rank factorization of rank k of a
|C|× |P | matrix M comprised of interactions between users and items (c.f., Section 2.4.1).
The product UV T of the resulting feature matrices U and V approximates M . For single
machine implementations, SGD is the preferred technique to compute a low-rank matrix
factorization. SGD is easy to implement and computationally less expensive than ALS,
where every iteration runs in O((|C| + |P |) ∗ k3), as |C| + |P | linear systems have to
be solved (c.f., Section 2.4.2). Unfortunately, SGD is inherently sequential, because it
updates the model parameters after each processed interaction. Following this rationale,
we chose ALS for our parallel implementation. It is computationally more expensive than
SGD, yet provides higher quality updates and naturally amends itself to parallelization.
When we re-compute the user feature matrix U for example, ui, the i-th row of U , can
be re-computed by solving a least squares problem only including mi, the i-th row of
M , which holds user i’s interactions, and all the columns vj of V that correspond to
non-zero entries in mi, (c.f., Figure 3.5). This re-computation of ui is independent from
the re-computation of all other rows of U and therefore, the re-computation of U is easy
to parallelize if we manage to guarantee efficient data access to the rows of M and the
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Figure 3.5: Dependencies for re-computing a row of U with Alternating Least Squares.

corresponding columns from V . In the following we refer to the sequence of re-computing
of U followed by re-computing V as a single iteration in ALS.

From a data processing perspective, we conduct a parallel join between the interaction
data M and V (the item features) in order to re-compute the rows of U . Analogously, we
conduct a parallel join between M and U (the user features) to re-compute V . Finding an
efficient execution strategy for these joins is crucial for the performance of our proposed
parallel solution. When executing joins in a shared-nothing environment, minimizing
the required amount of inter-machine communication is decisive for the performance
of the execution, as network bandwidth is the most scarce resource in a cluster. For
matrix factorization with ALS, we have to alternatingly join M with V and U . In both
cases, the interaction matrix M is usually much larger than any of the feature matrices.
For the datasets used in our experiments and a factorization of rank 20, the interaction
matrix M is 10 to 20 times larger than U and 250 to 2500 times larger than V . We
limit our approach to use-cases where U nor V individually fit into the memory of a
single machine of the cluster (Section 3.4 will show how to efficiently handle use cases
where this assumption is violated). A rough estimate of the required memory for the
re-computation steps in ALS is max(|C|, |P |) ∗ r ∗ 8 byte, as alternatingly, a single dense
double-precision representation of the matrices U or V has to be stored in memory on
each machine. Even for 10 million users or items and a rank of 100, the estimated required
memory would be less than 8 gigabyte, which today’s commodity hardware can easily
handle. Our experiments in Section 3.3.4 show that, despite this limitation, we handle
datasets with billions of data points. In such a setting, an efficient way to implement
the necessary joins for ALS in MapReduce is to use a parallel broadcast-join [25]. The
smaller dataset (U or V ) is replicated to every machine of the cluster. Each machine
already holds a local partition of M which is stored in the DFS. Then the join between
the local partition of M and the replicated copy of V (and analogously between the
local partition of M and U) executes with a map operator. This operator additionally
implements the logic to re-compute the feature vectors from the join result, which means
that we execute a whole re-computation of U or V using a single map operator. We
broadcast M to all participating machines, which create a hashtable for its contents, the
item feature vectors. M is stored in the DFS partitioned by its rows and forms the input
for the map operator. The map operator reads a row mi of M (the interaction history
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of user i) and selects all the item feature vectors vj from the hashtable holding V that
correspond to non-zero entries j in mi. Next, the map operator solves a linear system
created from the interactions and item feature vectors and writes back its result, the
re-computed feature vector ui for user i. The re-computation of V works analogously,
with the only difference that we need to broadcast U and store M partitioned by its
columns (the interactions per item) in the DFS.

We integrate a UDF for solving the least-squares problems into our algorithmic
framework. This UDF is invoked within the map-operator and generalizes our implemen-
tation such that different flavors of ALS are supported without having to change the
distributed algorithm. Examples for such flavors are ALS formulations optimized for
explicit and implicit feedback data [88,189]. The UDF takes four input arguments: the
features and interaction history which the map-operator uses, as well as a regularization
constant λ and the rank of the factorization k:

solve : (features, interactions, lambda, rank)→ features

We replace lines 4 & 6 in Algorithm 5 responsible for the parallel feature vector re-
computation with the corresponding UDF calls ui ← solve(Vhi ,m

T
hi
, λ, k) and vj ←

solve(Uhj ,mhj , λ, k).

The proposed approach is able to avoid some of the drawbacks of MapReduce and
common implementations (c.f., Section 2.3.3). It uses only map jobs that are easier
to schedule than jobs containing map and reduce operators. Additionally, the costly
shuffle-phase is avoided, in which all data would be sorted and sent over the network.
As we execute the join and the re-computation using a single job, we also spare to
materialize the join result in the DFS. Furthermore, we change two characteristics of
the typical MapReduce execution model to further improve the performance: (1) Our
implementation applies multithreaded mappers that leverage all cores of the worker
machines for the re-computation of the feature matrices. We run a single map-operator
per machine and all cores share the same read-only copy of the broadcasted feature
matrix. Thereby we avoid having to store multiple copies of that matrix in memory for
several map tasks that run on the same machine; (2) We configure Hadoop to re-use
the VMs on the worker machines and cache the feature matrices in memory to avoid
that later scheduled mappers have to re-read the data from disk each time upon a task
invocation.

The main drawback of a broadcast approach is that every additional machine in the
cluster requires another copy of the feature matrix to be sent over the network.An
alternative would be to use a repartition join [25] with constant network traffic and linear
scale-out. However, this technique has an enormous constant overhead. Let |M | denote
the number of interactions, m the number of machines in the cluster, e the replication
factor of the DFS and |T | the number of users or items. We assume that rating values are
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stored with single precision. If we employ a repartition-join we need two map-reduce jobs
per re-computation then. In the first job, we conduct the join which sends the interaction
matrix M and either U or V over the network, accounting to |M | ∗ 4 + |T | ∗ e ∗ 8 bytes
of network traffic. The result must be materialized in the DFS, which requires another
(|M | ∗ 4 + |T | ∗ e ∗ 8) ∗ nr bytes of traffic. The re-computation of the feature matrix must
be conducted via a second map-reduce job that sends all the ratings and corresponding
feature vectors per user or item over the network, accounting for an additional |M | ∗ e ∗ 8
bytes. On the contrary, the traffic for our proposed broadcast-join technique depends on
the number of machines and accounts to |T | ∗ e ∗m ∗ 8 bytes. Applying these estimations
to the datasets used for our experiments, the cluster size would have to exceed several
hundred machines to have our broadcast-join technique cause more network traffic than a
computation via repartition-join. Further, this argumentation only looks at the required
network traffic and does not account for the fact that the computation via repartition-join
would also need to sort and materialize the intermediate data in each step. We conclude
from these cost estimations that our approach with a series of broadcast-joins is to be
preferred for common production scenarios.

3.3.4 Experiments

In this section, we experimentally illustrate that our approach is suitable for real-world
production settings where an approach has to run in a few hours to be integratable
into analytical workflows. We solely focus on measuring the runtime of computing a
factorization, as the prediction quality of the ALS approach is well studied [73,88,189].
We use a formulation of ALS that is aimed at rating prediction [189]. The cluster for our
experiments consists of 26 machines running Java 7 and Hadoop 1.0.4 [11]. Each machine
has two 8-core Opteron CPUs, 32 GB memory and four 1 TB disk drives. We use two
publicly available datasets for our experiments: A set of 100,480,507 ratings given to
17,770 movies by 480,189 users from the Netflix prize [21] and another set comprised
of 717,872,016 ratings given to 136,736 songs by 1,823,179 users of the Yahoo! Music
community [181]. For tests at industrial-scale, we generate a synthetic dataset termed
Bigflix using the Myriad data generation toolkit [5]. From the training set of the Netflix
prize, we extract the probability of rating each item and increase the item space by a
factor of six to gain more than 100,000 movies. Next, we extract the distribution of
ratings per user. We configure Myriad to create data for 25 million users by the following
process: For each user, Myriad samples a corresponding number of ratings from the
extracted distribution of ratings per user. Then, Myriad samples an item from the item
probability distribution for each rating. The corresponding rating value is simply chosen
from a uniform distribution, as we do not interpret the result anyways, but only want to
look at the performance of computing the factorization. Bigflix contains 5,231,536,647
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Figure 3.6: Scale-out experiments with MapReduce.

interactions and mimicks the 25 million subscribers and 5 billion ratings, which Netflix
recently reported as its current production workload [8].

We start by measuring the average runtime per individual re-computation of U and V
for different feature space sizes on the Netflix dataset and on the Yahoo Songs dataset
(c.f., Figure 3.6a) using 26 machines. For Netflix, the average runtime per re-computation
always lies between 35 and 60 seconds, regardless of the feature space size. This is a clear
indication that for this small dataset the runtime is dominated by the scheduling overhead
of Hadoop. For the larger Yahoo Songs dataset we see the same behavior for small
feature space sizes and observe that the computation becomes dominated by the time to
broadcast one feature matrix and re-compute the other one for larger feature space sizes
of 50 and 100. We notice that re-computing V is much more costly then re-computing
U . This happens because in this dataset, the number of users is nearly twenty times as
large as the number of items, which means that it takes much longer to broadcast U .
The experiments show that we can run 37 to 47 iterations per hour on Netflix and 15 to
38 iterations per hour on the Yahoo Songs dataset (e.g., ALS typically needs about 15
iterations to converge on Netflix [189]). This shows that our approach easily computes
factorizations of datasets with hundreds of millions of interactions repeatedly per day.

Finally we run scale-out tests on Bigflix: we measure the average runtime per re-
computation of U and V during five iterations of ALS on this dataset on clusters of 5, 10,
15, 20 and 25 machines (c.f., Figure 3.6b) conducting a factorization of rank ten. With 5
machines, an iteration takes about 19 minutes and with 25 machines, we are able to bring
this down to 6 minutes. We observe that the computation speedup does not linearly scale
with the number of machines. This behavior is expected because of the broadcast-join
we employ, where every additional machine causes another copy of the feature matrix
to be sent over the network. On clusters with less than several hundred machines, our
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chosen approach is much more performant than a repartition-join, although the latter is
linearly scaling. With 25 machines, we can run about 9 to 10 iterations per hour, which
allows us to obtain a factorization in a few hours, a timeframe completely suitable for a
production setting.

3.4 A Parameter Server Approach to Distributed Matrix Factorization

In this section, we revisit the matrix factorization problem, but drop the assumption that
the model fits into the memory of a single machine, as we look at datasets with hundreds
of millions of users. Furthermore, we exploratorily investigate the advantages and
disadvantages of a non-dataflow architecture, which allows us to leverage asynchronicity
for the factorization. Recommender systems are a prime example for ML problems where
the size of the model is usually proportional to the input (e.g., the number of users in the
dataset ). In cases with hundreds of millions of users this model exceeds the memory of an
individual machine and distributed approaches to model training that leverage multiple
machines become necessary. This leads to a set of challenges, e.g. how to partition
the model among the participating machines and how to correctly execute learning
algorithms in such a setting. In the following, we describe ’Factorbird’, a prototypical
system that leverages a parameter server architecture [114] for learning large matrix
factorization models for recommendation mining. Again, we compute a factorization of
low-rank k of a |C| × |P | matrix M comprised of interaction data between users and
items (c.f., Section 2.4.1). The factorization consists of two factor matrices U and V ,
such that their product UV approximates the observed parts of M and generalizes well
to unobserved parts of M (c.f. Figure 3.7).

Figure 3.7: Latent factor models as matrix factorization problem.

Compared to the previous model in Section 3.3.3, we now adopt a more sophisticated
approach outlined in [106]. First, we introduce a global bias term g, which captures
the average interaction strength between a user and an item in the dataset. Next, we
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introduce a user-specific bias term bUi for user i and an item-specific bias term bias bVj for
item j. These biases model how strongly the interactions of certain users and items tend
to deviate from the global average. We substitute the dot product uTi vj for predicting
the strength of the interaction between a user i and an item j with a prediction function
p(i, j) = g + bUi + bVj + uTi vj that takes the bias terms into account. Furthermore, we
introduce a function a(i, j) for determining the strength of the interaction between user
i and item j. This allows us to transform the observed entries mij of M . Finally, we
add a function w(i, j) for weighting the prediction error for interaction between user i
and item j. This function becomes useful when M consists of data from various sources
with differing confidence in the observations. The loss function that we minimize for our
latent factor model in Factorbird is the following:

min
g,bU ,bV ,U,V

1

2

 ∑
i,j∈M

w(i, j)(p(i, j)− a(i, j))2

+
λ

2

(
g2 + ‖bU‖2 + ‖bV ‖2 + ‖U‖2F + ‖V ‖2F

)
We adopt a graph-specific terminology for the rest of this section, as this work originates
from research on large network datasets from Twitter. Therefore, we assume that M
represents a network (e.g. the network of user followings in Twitter), i and j reference
vertices in this network (e.g. two users in this network) and the edges of the network
correspond to observed entries of M , meaning that a(i, j) depicts the weight of a directed
edge between a vertex i and a vertex j in this network. Furthermore, we assume that
the bias vectors bU and bV are stored in U and V (e.g., as first column and first row), to
simplify notation.

3.4.1 Challenges in Distributed Asynchronous Matrix Factorization

First, Factorbird must handle factorizations of twitter-scale graphs with hundreds of
millions of vertices and dozens of billions of edges. Scalability to datasets of this size is
more important than high performance on small datasets commonly used in research
(such as the Netflix [21] dataset). The matrices representing these graphs are either
square (e.g. user to user followings) or ‘tall-and-wide’ for bipartite graphs (e.g. user to
tweets). Second, the system has to be highly usable and adaptable for data scientists
without making a systems background a necessity. No systems programming should be
required to try out a variation of our model or a different loss function. Instead, the
system should offer interfaces that abstract from the distributed execution model and
are intuitive to implement given an ML background. Third, the system design shall be
simple to keep the maintenance and debugging effort low. Additionally, the system design
should be easily extendable into a streaming system in the future, where a previously
learned matrix factorization is updated online given a stream of new observations. This
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is the main reason why we decide against using ALS, which is much harder to adapt to a
streaming scenario than SGD.

A delicate choice is which optimization technique to build the system on. We decided for
SGD, as it is simple, provides fast convergence and is easy to adapt to different models
and loss functions. Furthermore, SGD is much easier to adapt to a streaming scenario
due its online nature, especially in comparison to ALS which relies on large batched
updates (c.f. Section 2.4.2). Algorithm 9 shows the individual steps to conduct when
learning the factorization with SGD for our model introduced in Section 3.4. First, we
randomly initialize the factor matrices U and V (c.f. line 1). Next, we randomly pick an
edge (i, j) from the graph and compute the weighted error eij of the prediction p(i, j)
against the actual edge strength a(i, j) (c.f. lines 3 & 4). Next, we update the global
bias term as well as the bias terms for i and j proportional to the prediction error eij ,
the learning rate η and the regularization constant λ (c.f. lines 5 to 7). We weight the
regularization updates according the out-degree ni of vertex i (the number of observed
entries in the i-th row of M) and the in-degree nj of j (the number of observed entries
in the j-th column of M). We update the factor vectors ui and vj analogously (c.f. lines
8 & 9). The whole process is repeated until convergence.

Algorithm 9: Bias-aware variant of the SGD algorithm for matrix factorization.

1 randomly initialize U and V
2 while not converged
3 randomly pick edge (i, j)
4 eij ← w(i, j)(a(i, j)− p(i, j))
5 g ← g − η (eij + λg)

6 bUi ← bUi − η
(
eij + λ

ni
bUi

)
7 bVj ← bVj − η

(
eij + λ

nj
bVj

)
8 ui ← ui − η

(
eij vj + λ

ni
ui

)
9 vj ← vj − η

(
eij ui + λ

nj
vj

)
Running SGD on datasets of Twitter scale inevitably leads to a set of challenges that
have to be overcome when designing a scalable system. Our main focus is to present a
prototype of a system that elegantly solves these challenges.

(1) The resulting factor matrices for a huge network quickly become larger than the
memory available on an individual commodity machine [85, 173]. For example, U and V
with k = 100 and a single precision factor representation for a graph with 250 million
vertices already have a combined size of about 200 GB. This estimation does not even take
operating system buffers and caches, object references and required statistics like degree
distribution of the graph into account, which also compete for memory. Furthermore,
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there might be cases with billions of vertices in the network (e.g., the users-to-tweets
graph).

(2) Due to the sheer number of observations in large datasets, we aim to leverage multiple
cores and machines to learn our desired matrix factorization. Unfortunately, SGD is an
inherently sequential algorithm. It randomly picks an observation and updates the model
parameters before proceeding to the next observation (c.f., Algorithm 9). When we run
SGD in parallel on multiple cores, there is a chance that we concurrently try to update
the same ui or vj , which results in conflicting writes and lost updates.

3.4.2 Parameter Server Architecture & Hogwild!-based Learning

In order to overcome the first challenge, we leverage a distributed architecture that allows
us to partition the large model (the factor matrices) over several machines. We adapt
a ‘Parameter Server’ architecture [114]. As illustrated in Figure 3.8, we partition the
factor matrices over a set of machines, to which we refer to as parameter machines. At
the same time, we partition the graph (our input data) over a set of so-called learner
machines. Each learner machine runs multi-threaded SGD on its portions of the input
data. For every observation to process, the learner machine has to fetch the corresponding
factor vectors from the parameter machines, update them and write them back over the
network.

Figure 3.8: Parameter Server architecture.

This architecture inevitably leads to the second challege, the question of how to handle
concurrent, possibly conflicting updates to the factor vectors. When two learner machines
fetch, update and write back the same factor vector concurrently, one such update will be
overridden. In the special case of matrix factorization, approaches to parallelizing SGD
have been proposed that leverage a carefully chosen partitioning of the input data to avoid
conflicting updates [73,145]. As these approaches require complex data movement and
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synchronization patterns and are at the same time hard to adapt to a streaming scenario,
we decided for an alternative approach that is simpler to implement in a distributed
setting. Instead of taking complex actions to prevent conflicting updates, Factorbird
builds upon a recently proposed parallelization scheme for SGD-based learning called
Hogwild! [146]. This work states that parallel SGD can be implemented without any
locking if most updates only modify small parts of the model. The authors explicitly
name latent factor models as one such case.

The special nature of the matrix factorization problem allows us for a further optimization
in our system design, which reduces the required network traffic and at the same time
greatly lowers the probability for conflicting overwrites. We reduce the communication
cost by 50% through intelligent partitioning, as follows. If we partition M by either rows
or columns over the learning machines, than the updates to either U or V become local,
when we co-partition one of the factor matrices (U in the case of partitioning by rows, V
in the case of partitioning by columns) with M on the learner machines. In the light of
minimizing update conflict potential, we decide to co-locate V on the learner machines
and keep U in the parameter machines (c.f., Figure 3.9). We choose this scheme for the
following reasons: In case of the follower graph, the number of updates to a factor vector
ui in U is equal to the out-degree of the corresponding vertex i, while the number of
updates to a factor vector vj in V is equal to the in-degree of the corresponding vertex
j. As the in-degree distribution of the follower graph has much higher skew than the
out-degree distribution [130], we choose to localize the updates to V , which gives us a
higher reduction in conflict potential than localizing U . Other graphs in twitter have
similar skew in the degree distribution.

Figure 3.9: Partitioning scheme and system architecture.
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Implementation: We implement Factorbird using Twitter’s existing technology stack
and infrastructure. For the parameter machines, we leverage an existing cluster of
memcached machines, a popular distributed shared memory abstraction [63]. We im-
plement the learner machines using Twitter’s Finagle abstraction [60] for concurrent
remote procedure calls. Hadoop’s distributed filesystem serves as persistent datastore for
reading inputs and storing the final results. We conduct prepartitioning and statistics
computation of the input via MapReduce. The learner machines are assigned resources
via Apache Mesos, a resource managing platform that allows different cluster computing
frameworks to run on shared commodity clusters [87]. The typical execution steps on a
learner machine are as follows. First, the machine loads statistics about the input graph
and its assigned partition from HDFS, e.g. the number of edges and vertices, the average
edge weight and the degree distribution of the graph. We use these statistics for learning
as well as efficiently allocating memory for the required datastructures. Next, the learner
machine instantiates its local partition of V . Subsequently, the model learning phase
starts: the learner machine reads the edges of its assigned partition of the input graph
in a streaming fashion. For each edge (i, j), it reads the corresponding factor vector
ui from the parameter machines and the factor vector vj from its local partition of V .
The reads from memcached are conducted in batches to increase throughput. Next, the
learner machine updates the factor vectors using SGD and writes them back (c.f., Algo-
rithm 9). Note that strictly speaking, we do not run vanilla Hogwild! on U , as memcached
atomically updates the whole factor vector instead of individually updating the factors.
Furthermore, we have every learner machine learn the global bias g for itself, as we would
have an update conflict for every interaction otherwise.

The learner machines repeat these steps until a user-specified number of passes over
the input graph has been conducted. Finally, the learner machines persist the learned
matrices U and V in a partitioned manner in the distributed filesystem. Factorbird
makes extensive use of memory-efficient data structures for managing factor vectors,
the local partition of V and graph statistics such as the degree per vertex. The main
objective of these data structures is to use as little memory as possible and to avoid
object allocation and full garbage collection invocations in the JVM. A factor vector as
well as a partition of a factor matrix are therefore internally represented by byte buffers
and large primitive arrays, which are efficiently pre-allocated. For example, a learning
machine determines the size of its local partition of V at startup time by reading the
number of vertices assigned to its partition from the graph statistics. The partition
of V is internally represented by a huge float array, into which the individual factor
vectors (the columns of V ) are packed. A mapping of vertex ids to offsets in this array
is stored and update operations directly write to the underlying array. During the
training phase, a learner machine directly reads the training edges from a compressed
file in the distributed filesystem in a streaming fashion. If more than one pass through
the training edges is necessary, the learner machine will on-the-fly create a copy of the
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input file on local disk and switch to streaming edges from this local file for subsequent
passes. Furthermore, some learning approaches require synthetically generated negative
examples [140] (possibly taken into account with a lower confidence than observed positive
examples). We therefore implement on-the-fly generation of such negative examples (with
a configurable probability) and mix them into the original positive examples supplied on
the learning machines.

3.4.3 Abstraction of Stochastic Gradient Descent Updates as UDF

The central abstraction for implementing the SGD updates of the learning algorithm
within Factorbird is the update UDF. It is the main interface for data scientists wanting
to try new models and shields the programmer from the complexity of the distributed
nature of the underlying learning process. In this UDF, we implement the SGD-based
update of two factor vectors ui and vj . The system provides the strength a(i, j) of the
edge between vertex i and j, as well the vertex degrees ni and nj and the error weight
w(i, j) as additional arguments. A typical implementation of this method conducts the
steps from line 4 to 9 in Algorithm 9. This abstraction makes it very easy to implement
learning algorithms for different models, e.g. it only requires a few lines of code to
implement weighted matrix factorization for implicit feedback [88] in the UDF.

update :
(
g(t), bUi

(t)
, bVj

(t)
, u

(t)
i , v

(t)
j , a(i, j), ni, nj , w(i, j)

)
→
(
g(t+1), bUi

(t+1)
, bVj

(t+1)
, u

(t+1)
i , v

(t+1)
j

)

3.4.4 Distributed Cross-Validation using Model Multiplexing

The next aspect we focus on in Factorbird is the quality of the models we learn. Ultimately,
these models have to be evaluated using online experiments with real users, but during
the development and batch training phase, we concentrate on a simple offline metric: the
prediction quality on held-out data, measured by the root mean squared error (RMSE).
This metric has been the dominating evaluation criterion for collaborative filtering
algorithms in academia in the last years [21]. Unfortunately, this prediction quality is
heavily influenced by the choice of hyperparameters for our model, such as η (which
controls rate of learning), λ (which controls regularization), or the number of factors k.
In order to find a well-working hyperparameter combination, we conduct a grid search
in the hyperparameter space. We extend Factorbird to enable hold-out tests at scale.
During preprocessing, we randomly split the edges of the input graph into training set,
validation set, and test set. Factorbird then learns a model on the training set, chooses
the hyperparameter combination using the prediction quality on the validation set, and
finally computes the RMSE on the test set.
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However, conducting a single training run with Factorbird for each hyperparameter
combination to inspect is tedious and takes a long time due to scheduling, resource
negotation, and I/O overheads. We therefore describe a multiplexing technique to
learn many models with different hyperparameters at once, in order to speed up the
hyperparameter search. Given that we aim to inspect c hyperparameter combinations
for a factorization of rank k, we pack c factor vectors into a large U of dimensionality
m× c ∗ k and a large V of dimensionality c ∗ k× n. We use a specialized implementation
of the update UDF that is aware of the multiplexing (e.g. , it knows that the factors
for the p-th model are contained in the p ∗ k-th to p ∗ (k + 1)-th entries of a factor
vector) and learns c models at once. Figure 3.10 illustrates how the factor matrices
for all possible combinations of two different learning rates η1, η2 and two different
regularization constants λ1, λ2 would be packed into large matrices U and V .

Figure 3.10: Packing many models into one for hyperparameter search.

In order to compute the prediction quality on held-out data, Factorbird requires another
UDF called predict, which predicts the strength m̂ij of an unobserved edge (i, j) from
the corresponding factor vectors ui and vj , as well as the biases g, bUi and bVj :

predict :
(
g, bUi , b

V
j , ui, vj

)
→ m̂ij

Optionally, we provide functionality to estimate the current value of the loss function
using samples of edges and factors, and make the resulting estimates inspectable via an
external dashboard.

3.4.5 Experiments

We run experiments on various subsets of ‘RealGraph’, a graph that models various
interactions between Twitter users [96]. The learner machines for our experiments are
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provisioned by Apache Mesos. In all our experiments, we factorize the binarized adjacency
matrix of the graph subset. That means, the transformation function a(i, j) returns
1 if user i interacted with user j and 0 otherwise (in the case of a synthetic negative
example). We equally weight all prediction errors (w(i, j) = 1). Due to the limited time
in which we had access to Twitter’s computing infrastructure, we only present preliminary
experiments, aimed at validating the correctness of our system and showing its capacity to
handle twitter-scale graphs. There is still a large potential for improvements in accuracy
and performance that need to be tackled in future work by someone with access to
a similar infrastrucuture. We run a first set of experiments on a small sample of the
RealGraph, consisting of 100 million interactions between 440 thousand popular users.
Additionally, we make Factorbird generate 500 million synthetic negative edges.

Benefits of increasing model complexity. In the first experiment, we show the
positive effects on prediction quality of the individual parts of our chosen model. We
randomly split the dataset into 80% training set, 10% validation set and 10% test set. We
train models with increasing complexity and measure their prediction quality in terms
of RMSE on the 10% held-out data in the test set (c.f., Figure 3.11). We start with a
baseline that only uses the global bias (the average edge strength), followed by a more
complex model that uses the global bias as well as vertex-specific bias terms. Finally, we
train biased factorization models with k ∈ {2, 5, 10, 20}. We choose the hyperparameters
using the validation set. The outcome confirms that an increase in the complexity of our
model results in an increase in prediction quality. The global bias baseline provides an
RMSE of 0.3727, adding the vertex-specific bias terms reduces the error to 0.3121 and
incorporating the factors gives additional improvements, reducing the error to 0.2477 for
k = 20.
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Figure 3.11: Prediction quality on held-out data with increasing model complexity.

Visual inspection. Next, we plot a selection of factor vectors from the V matrix of
a biased factorization with k = 2. Two users i and j will be close in the resulting
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low-dimensional space if their follower vectors are roughly linear combinations of each
other. Due to homophily, we expect Twitter users sharing a common interest or char-
acteristic to have a large overlap in followers and therefore to be much closer in the
resulting space. Figure 3.12 indicates that factorizations produced by Factorbird have
this property. We see several clusters of Twitter accounts of similar type, e.g. a cluster
of european politicians, containing Sigmar Gabriel (@sigmargabriel) and Reinhard
Buetikofer (@bueti) from Germany as well as Arseniy Yatsenyuk (@Yatsenuk AP) from
Ukraine. Another cluster consists of popstars such as Kanye West (@kanyewest), Justin
Bieber (@justinbieber) and the boy-band One Direction (@onedirection). A third
one related to U.S. sports contains Emma Span (@emmaspan), an editor for baseball
at Sports Illustrated, Detroit’s football team (@lions) and an account of the Daytona
International Speedway (@disupdates).
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Figure 3.12: Plot of a selection of twitter users as positioned by a factorization with k = 2
of a sample of RealGraph.

Scale-out. For the scale-out experiments we build a matrix based on a large subset of
Twitter’s RealGraph [96] consisting of more than 38.5 billion non-zeros (half of which
are synthetic negative examples). The dimensions of the matrix are 229 million × 195
million. To the best of our knowledge, this is the largest dataset on which collaborative
filtering experiments have been published so far. In comparison to the Netflix prize
dataset [21], which is often used for scale-out tests [117], our dataset is more than
two orders of magnitude larger, has approximately 470 times more rows, 11,000 times
more columns and 385 times more datapoints. We run Factorbird using 50 instances
for the learner machines, provisioned in a Mesos cluster, with 16 cores and 16 GB of
memory each. We leverage a shared memcached cluster for our parameter machines,
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with a guaranteed quota of 5 million commands per second. We run two passes of
hyperparameter search on 80% of the data for 16 different learners with k = 5. The rank
of the factor matrices U and V is (5 + 1) ∗ 16 = 96, which means we train a model with
approximately (229M + 195M) ∗ 96 ≈ 40B parameters. In this experiment, Factorbird
issues more than 4.2 million commands per second to memcached on average and updates
around 400M parameters per second. A single SGD pass through the training set finishes
in about 2.5 hours on the majority of learner machines. Unfortunately, we experience that
a few straggler machines take much longer to finish the computation. We find that these
stragglers suffer from a heavily reduced network bandwidth to the parameter machines
(up to only a third of the bandwidth of the non-straggling machines). This issue is caused
by multi-tenancy in the cluster: we share our machines with other applications that
in some cases cause extreme amounts of network traffic. Unfortunately, the resource
manager Mesos cannot guarantee a defined network bandwidth for applications at the
moment. For high performance, Factorbird needs to either be run in a different cluster or
must implement work-stealing algorithms to mitigate the straggler effects. Nevertheless,
this experiment clearly shows the potential of our prototype to handle Twitter-scale
datasets.

3.5 Centrality Computation in Dataflow and Vertex-Centric Systems

In the following sections, we briefly discuss two negative results from our research on
distributed graph processing. We first highlight a scalability bottleneck in path-based
centrality computations, introduced by choosing a distributed architecture over a single
machine setup. Secondly, we discuss a simple algorithm which only slightly varies from
common examples like PageRank, but for which the vertex-centric programming model
fails as easy-to-use abstraction.

3.5.1 Geometric Centrality with Hyperball

We put our focus on the distributed computation of geometric centralities such as
closeness centrality and harmonic centrality in large networks (c.f., Section 2.4.3). A
distributed algorithm to estimate the neighborhood function of the graph (from which
these centralities are computed) nicely fits into vertex-centric graph processing (c.f., Sec-
tion 2.3.4): We conduct a series of bitstring exchanges between the vertices of the
network (c.f., Section 2.4.4).

An exact computation of these centrality measure would require memory quadratic in
the number of vertices of the graph and would therefore not scale. We adopt a common
approximation technique to overcome this bottleneck: we approximate the required
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cardinality sets with a sketch, in our case with a hyperloglog counter [27, 64,98, 139]. A
vertex-centric variant of the algorithm is shown by the following pseudocode:

class HyperBall extends Vertex {

compute(neighborCounters) {

HyperLogLog counter = getValue()

if (inFirstSuperstep()) {

counter.observe(vertexId());

sendMessageToAllEdges(vertex, counter);

} else {

numSeenBefore = counter.count();

for (HyperLogLog neighborCounter : neighborCounters) {

counter.merge(neighborCounter);

}

numSeenNow = counter.count();

if (numSeenNow > numSeenBefore) {

storeEstimate(vertexId(), getSuperstep(), numSeenNow);

sendMessageToAllEdges(vertex, counter);

}

}

vertex.voteToHalt();

}

}

In the first iteration, every vertex adds its identifier to the hyperloglog counter and sends
this counter to all incident neighbors. In a subsequent iteration t, each vertex i merges the
counters received from its neighbors to re-compute its stored counter. If the value of the
counter has changed, the vertex sends the updated counter to all its neighbors for receival
in the next iteration. The updated value of the counter (represented by the variable
numSeenNow in the pseudocode) gives the value of the neighborhood function N(i, t) for
this vertex i in iteration t. The algorithm convergences once no counter changes its value
anymore. Therefore, the number of iterations required equals the diameter of the graph.
Additionally, we use a combiner to pre-aggregate the counters destined for a particular
vertex.

We aim to repeat the experiment presented in [29]: Computing closeness centrality on the
large hyperlink graph of the Clueweb corpus [43], which consists of 4,780,950,903 vertices
connected by 7,944,351,835 links. We therefore implement the vertex-centric variant in
Apache Giraph 1.0 and use our cluster of 25 machines for the experiment. Each machine
has two 8-core Opteron CPUs, 32 GB memory and four 1 TB disk drives. Unfortunately,
the computation always crashes during the first iteration due to insufficient memory in
the cluster. On the contrary, a single machine implementation on a machine with 40 cores
and 1 TB of RAM computes these centralities in 96 and 422 minutes, dependening on
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the desired accuracy of the computation [29]. Although our cluster has only slightly less
memory in aggregate than the single machine (800 GB vs 1 TB), we find that the memory
requirements imposed by the distributed architecture pose a scalability bottleneck for this
particular dataset. The main problem is that Giraph requires two copies of the counter
for every vertex to be in memory. The first copy holds the actual vertex value, while
the second copy lives in a hash-table which is used for hash-aggregating the received
messages. These memory requirements for the two copies (plus the memory required for
auxiliary datastructures such as network buffers) combined with the extreme amount
of vertices in the dataset cause the crashes due to insufficient memory. We conclude
that there are graph datasets and use cases where the economics of distribution clearly
speak against a vertex-centric system on a commodity cluster and favor a non-distributed
solution on a single machine with large memory.

3.5.2 Flow-based Centrality with LineRank

In this section, we compare the vertex-centric programming model of Pregel-like systems
to the general dataflow abstraction in Apache Flink for implementing the LineRank
algorithm [97]. LineRank is a spectral centrality measure and conceptually very similar
to PageRank which is often used as prime example for vertex-centric programs (c.f., Sec-
tion 2.4.3). Analogous to PageRank, LineRank models centrality by the dominant
eigenvector of a large matrix representing the network. While PageRank uses a markov
chain directly derived from the links in the network, LineRank first weighs edges by
computing the dominant eigenvector of a markov chain derived from the line graph of
the network. The centrality of a vertex is then computed as the sum of the centralities
of its adjacent edges. As the line graph LG of a graph G quickly becomes intractably
large, LineRank operates on a decomposition of LG into the product of the source
incidence matrix SG with the target incidence matrix TG of the network. Algorithm 10
shows the steps required for calculating LineRank. We first compute a normalization
vector d (c.f., line 1). Next, we use the repeated matrix vector multiplications of the
Power Method (c.f., Section 2.4.4) to compute the dominant eigenvector of the transition
matrix of the line graph (c.f., lines 4 & 5). Note that we conduct two matrix vector
multiplications as we leverage the decomposition TGS

T
G of the line graph to not have to

materialize LG. Finally, we multiply the sum of the incidence matrices SG and TG by
the current eigenvector estimate to retrieve the LineRank (c.f., line 6).

In a series of experiments with a Flink and a Giraph implementation of the algorithm,
we find that both systems provide comparable performance that only differs in a constant
factor, which we attribute to implementation details [41]. However, we encountere huge
difficulties in implementing LineRank using the vertex-centric abstraction, although
it only slightly differs from PageRank, which fits very nicely into the vertex-centric
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Algorithm 10: LineRank algorithm as proposed in [97].

1 d← 1 / (TGS
T
G1)

2 v ← random vector of size m
3 r ← 1

m1

4 while v not converged:
5 v ← c

(
TGS

T
G(d⊗ v)

)
+ (1− c) r

6 return (SG + TG)T v

paradigm [120]. The first problem we ecounter is the creation of the incidence matrices
TG and SG which represent the line graph of the network. The incidence matrices require
a global sorting of the edges of the graph, as the row index in an incidence matrix
refers to the sorting index of the corresponding edge. Dataflow systems like Flink offer
operators for sorting data, but the vertex-centric paradigm lacks an abstraction for
such simple tasks. We therefore manually pre-process the datasets before handing them
to Giraph. The next difficulty lies in the two matrix-vector multiplications conducted
in line 5 of Algorithm 10. While Flink allows us to simply model a matrix-vector
multiplication using a join followed by a reduce operator, it is extremely tedious to
implement these steps in Giraph. We have to represent both incident and adjacent
edges of every vertex of the network and implement complex messaging logic in the
vertex update function [41]. Finally, the addition of the incidence matrices in line 6
requires a join abstraction, which is completely lacking in Pregel-like systems; we therefore
even refrained from implementing the last step in Giraph. We conclude that while the
vertex-centric abstraction is popular and very naturally fits a set of example algorithms
like PageRank or shortest paths, it fails to generalize to slightly more complex algorithms
from the same field. These more complex algorithms are easily expressable in general
dataflow systems such as Apache Flink, Hyracks or Apache Spark, which can also emulate
vertex-centric programs [36,62,177,180].

3.6 Related Work

Most closely related to our work on scaling item-based collaborative filtering is a MapRe-
duce formulation presented by Jiang et al. [93]. However they do not show how to
use a wide variety of similarity measures, they do not achieve linear scalability as they
undertake no means to handle the quadratic complexity introduced by ‘power users’ and
only present experiments on a small dataset. Another distributed implementation of an
item-based approach is used by Youtube’s recommender system [47], which applies a
domain specific way of diversifying the recommendations by interpreting the pairwise
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item similarities as a graph. Unfortunately this work does not include details that
describe how the similarity computation is actually executed other than stating it uses a
series of MapReduce computations walking through the user/video graph. Furthermore,
a very early implementation of a distributed item-based approach was applied in the
recommendation system of the TiVo set-top boxes [6], which suggests upcoming TV
shows to its users. In a proprietary architecture, show correlations are computed on the
server side and preference estimation is afterwards conducted on the client boxes using
the precomputed correlations. While we only empirically motivate our sampling scheme,
Zadeh et al. present a non-adaptive sampling-scheme for similarity matrix computations
on MapReduce with proven statistical guarantees [185].

SGD- and ALS-based matrix factorization techniques for recommender systems have
been extensively studied in the context of the Netflix Prize [106,189] and beyond [85,173].
These techniques have been extended to work on implicit feedback data [88] and to
optimize metrics different from RMSE [147,178]. This resulted in a huge body of work
on parallelizing the computation of latent factor models: The recommender system of
Google News [46] uses a MapReduce based implementation combining Probabilistic
Latent Semantic Indexing and a neighborhood approach with a distributed hashtable
that tracks item co-occurrences in realtime. As Google uses a proprietary implementation
of MapReduce, it is hard to assess the technical details of this approach. Zhou et. al.
describe a distributed implementation using Matlab [189]. GraphLab [117] is a specialized
system for parallel machine learning, where programs operate on a graph expressing
the computational dependencies of the data. GraphLab provides an asynchronous
implementation of ALS that models the interaction matrix as a bipartite graph where
users and items are represented by vertices and interactions by edges among them. A
similar synchronous implementation has been proposed for the graph abstraction of
Apache Spark [180]. Gemulla et. al presented a parallel matrix factorization using
Stochastic Gradient Descent [73], which leverages an intelligent partitioning to avoid
conflicting updates, where each iteration only works on a subset of the data and leverages
an intelligent partitioning that avoids conflicting updates. While their approach converges
faster than ALS, they switched their implementation to MPI [167] due to the overhead
incurred by Hadoop. Recht et al. proposed a biased sampling approach to avoid conflicting
updates during parallel training [145] and even proofed convergence under a minor amount
of update conflicts [146]. Recently, Yun et. al. presented a decentralized algorithm with
non-blocking communication for fast matrix factorization called NOMAD [184], where
processors asynchronously exchange ownership of model partitions. Our work in matrix
factorization on MapReduce builds on popular ALS formulations and has been used as
a baseline for systems like GraphLab and Spark. Factorbird combines Hogwild!-style
learning with a parameter server architecture [114] and presents a real-world system
design based on current research.
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Computing centrality measures at scale has been a much researched topic, both in
MapReduce-based systems [49,97–99], general dataflow systems [41,180] as well as graph-
based abstractions [117]. Recently, it has been shown that the large networks commonly
used in academia can be efficiently processed on single machines [29,112,119,123].

3.7 Conclusion

We showed how to build a scalable, neighboorhood-based recommender system based
on the MapReduce paradigm. We re-phrased the underlying similiarity computation to
run on a parallel processing platform with partitioned data and described how a wide
variety of measures for comparing item interactions easily integrate into our method. We
introduced a down sampling technique called interaction-cut to handle the computational
overhead introduced by ‘power users’. For a variety of datasets, we experimentally
showed that the prediction quality quickly converges to that achieved with unsampled
data for moderately sized interaction-cuts. We demonstrated a computation speedup
that is linear in the number of machines on a huge dataset of 700 million interactions
and showed the linear scale of the runtime with a growing number of users on that data.
Continuing the ML on MapReduce work, we presented an efficient scalable approach for
a data-parallel low-rank matrix factorization using Alternating Least Squares on a cluster
of commodity machines. We explained our choice of ALS as algorithm and described how
to implement it on MapReduce with a series of broadcast-joins, which can be efficiently
executed using only map jobs. We experimentally validated our approach on two large
datasets commonly used in research and on a synthetic dataset with more than 5 billion
datapoints, which mimicks an industry usecase. There are two important limitations
in the approaches presented. The similarity-based methods are highly dependent on
the number of items in the dataset. While our selective-down sampling technique helps
mitigate the quadratic character of the computation, the number of comparisons as well
as the result size still heavily depend on the number of items in the dataset. Therefore
this approach is best used in scenarios where the number of users largely exceeds the
number of items (e.g., in most online shopping scenarios). Our presented ALS approach
is limited by the assumption that the low-rank factor matrices fit into the main memory
of the individual machines of the cluster. In cases where this assumption is violated, we
recommend to switch to a parameter server-based approach.

We revisited the matrix factorization problem and combined a parameter server ar-
chitecture with asynchronous, lock-free Hogwild!-style learning to a prototype named
Factorbird. We proposed a special partitioning scheme to drastically reduce network
traffic and conflicting updates. We furthermore showed how to efficiently grid search
for hyperparameters at scale. In the end, we present experiments with our system on
a matrix consisting of more than 38 billion non-zeros and about 200 million rows and
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columns. Again, to the best of our knowledge, this is the largest matrix on which
factorization results have been reported in the literature. In future work, Factorbird
should be extended to a streaming scenario by bootstrapping it with a factorization that
was trained offline and then having it update this factorization online from a stream of
incoming real-time interactions. Furthermore, factorizing multiple matrices at once in
order to incorporate different types of interactions could improve model quality. Biased
sampling of the edges would allow us to use retrieve factor vectors for more than a single
update and thereby reduce network traffic. There are many technical improvements to
be made: e.g., a possible approach to recovery in case of failures in Factorbird could
be to restart learner and parameter machines from asynchronously written checkpoints
of the partitions of U and V which they hold [156]. It will be beneficiary to replace
memcached with a custom application to be able to achieve higher throughput and con-
duct true Hogwild!-style updates on the parameter machines. Moreover, this would allow
to run aggregations on the parameter machines. Additionally, dynamic load adaption
in Factorbird might help to mitigate the negative effects of stragglers on the overall
runtime. Another interesting research direction for future work would be to conduct
an in-depth experimental comparison of synchronous ALS-based matrix factorization
systems and asynchronous parameter-server based systems like Factorbird. We assume
that parameter servers only make sense for extremely large datasets and models. In
distributed systems, performance is heavily influenced by the amount of network traffic
produced by a system. A rough comparison of the traffic caused by Factorbird versus
the traffic caused by broadcast-based ALS shows different scaling behaviors. Let w be
the number of workers in the cluster, |M | the number of interactions (the number of
non-zero entries in M), |C| the number of users, |P | the number of items and k the rank
of the factorization. In every iteration, ALS needs to broadcast the two feature matrices
to all participating machines, causing an estimated network traffic of w ∗ ((|C|+ |P |) ∗ k),
which is proportional to the number of workers. Factorbird’s produced network traffic on
the other hand consists of the communication with the parameter machines and amounts
to 2 ∗ |M | ∗ k. We see that this traffic is independent of the number of workers and
solely depends on the input data. For smaller datasets, ALS should be more efficient,
but there should be a tipping point where parameter-server like architecture are to be
favored. Note that this comparison does not take into account that asynchronous systems
typically learn faster and therefore need fewer passes over the data.

With respect to distributed graph processing, we highlighted scalability bottlenecks in
the systems themselves, as well as short-comings of the vertex-centric programming
model.
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4 Optimistic Recovery for Distributed Iterative Data Processing

4.1 Problem Statement

In the previous chapter, we focused on fitting existing algorithms into the programming
models of parallel dataflow systems, thereby tackling algorithm-level bottlenecks in
scaling data mining algorithms. Yet, as discussed in Section 1.1, further problems need
to be addressed to achieve scalability in data mining. In this chapter, we concentrate on
systems aspects arising during the distributed execution of iterative algorithms. Such
algorithms repeat a step function until a termination condition is met; many important
algorithms from the fields of machine learning and graph processing exhibit this nature.
Examples include ALS and SGD for computing latent factor models as discussed in
Section 2.4.2, as well as the large number of graph algorithms solvable by generalized
iterative matrix vector multiplication as described in Section 2.4.4. The unique properties
of iterative tasks open up a set of research questions related to building distributed data
processing systems. We focus on improving the handling of machine and network failures
during the distributed execution of iterative algorithms. We concentrate on problems
where the size of the evolved solution is proportional to the input size and amends itself
to be partitioned among the participating machines in order to scale to large datasets.

The traditional approach to fault tolerance under such circumstances is to periodically
persist the application state as checkpoints and, upon failure, restore the state from
previously written checkpoints and restart the execution. This pessimistic method is
commonly referred to as rollback recovery [59]. Realizing fault tolerance in distributed
data analysis systems is a complex task. The optimal approach to fault tolerance depends,
among other parameters, on the size of the cluster, the characteristics of the hardware, the
duration of the data analysis program, the duration of individual stages of the program
(i.e., the duration of an iteration in our context), and the progress already made by the
program at the time of the failure. Most fault tolerance mechanisms introduce overhead
during normal (failure-free) operation, and recovery overhead in the case of failures [59].
An alternative approach to fault tolerance that does not rely on checkpointing is lineage-
based recovery (c.f., Section 2.3.3). Lineage-based recovery is not applicable to many
iterative algorithms however for the following reason. If the step function of the iteration
contains an operation with dependencies between all parallel partitions (e.g., via a reduce
operator), then lineage-based recovery results in a complete restart of the iterative
computation: The only way to re-compute the transitive dependencies of lost partitions
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4 Optimistic Recovery for Distributed Iterative Data Processing

in iteration i is to re-compute iteration i − 1, which relies on the result of iteration
i − 2, etc. These dependencies cascade back to the initial iteration state. We classify
recovery mechanisms for large-scale iterative computations in three broad categories,
ranging from the most pessimistic to the most optimistic: operator-level pessimistic
recovery, iteration-level pessimistic recovery, and the optimistic recovery mechanism
proposed in this paper. Pessimistic approaches assume a high probability of failure,
whereas optimistic approaches assume low failure probability.

Operator-level recovery, implemented in MapReduce [49], checkpoints the result of every
individual program stage (the result of the Map stage in MapReduce). Its sweet spot is
very large clusters with high failure rates. This recovery mechanism trades very high
failure-free overhead for rapid recovery. In the iterative algorithms setting, such an
approach would be desirable if failures occur at every iteration, where such an approach
would be the only viable way to allow the computation to finish. For iterative algorithms,
the amount of work per iteration is often much lower than that of a typical MapReduce
job, rendering operator-level recovery an overkill. However, the total execution time
across all iterations may still be significant. Hence, specialized systems for iterative
algorithms typically follow a more optimistic approach. In iteration-level recovery, as
implemented for example in graph processing systems [117,120], the result of an iteration
as a whole is checkpointed. In the case of failure, all participating machines need to
revert to the last checkpointed state. Iteration-level recovery may skip checkpointing
some iterations, trading better failure-free performance for higher recovery overhead in
case of a failure. For pessimistic iteration-level recovery to tolerate machine failures, it
must replicate the data to checkpoint to several machines, which requires extra network
bandwidth and disk space during execution. The overhead incurred to the execution time
is immense, in our experiments, we encounter that iterations where a checkpoint is taken
take up to 5 times longer than iterations without a checkpoint. Even worse, a pessimistic
approach always incurs this overhead, regardless whether a failure happens or not. An
extreme point of iteration-level recovery is “no fault tolerance”, where checkpoints are
never taken, and the whole program is re-executed from scratch in the case of a failure.

machine 1 machine 2 machine 3 machine 1 machine 2 machine 3 machine 4

compensation

failure-free execution execution with optimistic recovery

x1
(0) x2

(0) x3
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(3) x3
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(0) x3
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- - -

iteration 1
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Figure 4.1: Optimistic recovery with compensations illustrated.
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As alternative, we propose an optimistic recovery approach which never checkpoints any
state. Thus, it provides optimal failure-free performance, as its failure-free overhead is
virtually zero (Section 4.6 experimentally validates this) and at the same time, it requires
much less resources in the cluster compared to a pessimistic approach. Furthermore, this
optimistic approach only incurs overhead in case of failures, in the form of additional
iterations required to compute the solution. Figure 4.1 illustrates the optimistic recovery
scheme for iterative algorithms: Failure-free execution proceeds as if no fault tolerance is
desired. In case of a failure, we propose to finish the current iteration ignoring the failed
machines and simultaneously acquire new machines or re-distribute the work on existing
machines. These initialize the relevant iteration-invariant data partitions. Then, the
system applies a user-supplied piece of code that implements a compensate function, on
every machine. This compensation function sets the algorithm state to a consistent state
from which the algorithm will converge (e.g., if the algorithm computes a probability
distribution, the compensation function could have to make sure that all partitions
sum to unity). After that, the system proceeds with the execution. The compensation
function can be thought of as bringing the computation “back on track”, where the
errors introduced by the data loss are corrected by the algorithm itself in the subsequent
iterations. Figure 4.2 illustrates the different approaches. We see an exemplary iterative
algorithm that converges to a fixpoint after four steps without failures. In the case of
pessimistic failure recovery, it checkpoints the algorithm state after the first step and fails
in the second step. The algorithm simply restarts from the first iteration and repeats
exactly the same steps that it would have conducted in the failure-free case. With our
proposed optimistic recovery, the algorithm never checkpoints any state. Instead, the
compensation function restores a valid intermediate state after the failure in iteration
two. This results in a jump to another point in the space of intermediate solutions from
which the algorithm will still converge to the fixpoint. Note that this recovery might
introduce additional steps after a failure.

pessimistic recovery optimistic recoveryfailure-free

Figure 4.2: Different strategies to reach a fixpoint under potential failures in iterative
data processing.

In the majority of our simulations, the optimistic approach provided a superior runtime,
as additional iterations with a compensation function result in a shorter overall execution
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time than writing checkpoints and repeating iterations with a pessimistic approach.
Therefore, we conjecture that our proposed approach is a good fit for running iterative
algorithms on clusters with moderate failure rates, given that a compensation for the
algorithm to execute is known. Note that for many algorithms, it is easy to write a
compensation function whose application will provably lead the algorithm to convergence
(cf., Section 4.5, where we provide templates for compensating a variety of algorithms).
Our experiments in Section 4.6 show that our proposed optimistic recovery combines
optimal failure-free performance with fast recovery and at the same time outperforms a
pessimistic approach in the vast majority of cases.

4.2 Contributions

We propose a novel optimistic recovery mechanism that does not checkpoint any
state (c.f., Section 4.1). It provides optimal failure-free performance with respect to
the overhead required for guaranteeing fault tolerance, and simultaneously uses less
resources in the cluster than traditional approaches. Next, we discuss how to extend the
programming model of a massively parallel data flow system to allow users to specify
compensation functions. The compensation function becomes part of the execution plan,
and is only executed in case of failures (c.f., Section 4.4). Additionally, we describe how
our proposed recovery scheme fits into vertex-centric graph processing systems (c.f., Sec-
tion 4.3.3). In order to showcase the applicability of our approach to a wide variety
of problems, we explore three classes of problems from our exemplary data mining use
cases (c.f., Section 2.4), which are commonly solved with distributed, iterative data
processing. We start by looking at approaches to carry out link analysis and to compute
centralities in large networks. Techniques from this field are extensively used in web
mining for search engines and social network analysis. Next, we describe path problems in
graphs which include standard problems such as reachability and shortest paths. Lastly,
we look at distributed methods for factorizing large, sparse matrices, a field of high
importance for personalization and recommendation mining. For each class, we discuss
solving algorithms and provide blueprints for compensation functions (c.f., Section 4.5).
A programmer or library implementor can directly use these functions for algorithms that
fall into these classes. Finally, we evaluate our proposed recovery mechanism by applying
several of the discussed algorithms to large datasets (c.f., Section 4.6). We compare the
effort necessary to reach the solution after simulated failures with traditional pessimistic
approaches and our proposed optimistic approach. Our results show that our proposed
recovery mechanism provides optimal failure-free performance. In many failure cases, our
recovery mechanism is superior to pessimistic approaches for recovering algorithms that
incrementally compute their solution. For non-incremental algorithms that recompute
the whole solution in each iteration, we find our optimistic scheme to be superior to
pessimistic approaches for recovering from failures in early iterations.
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4.3 Distributed Execution of Fixpoint Algorithms

In the following, we introduce a general model for expressing fixpoint algorithms. This
model will form the basis for the distributed execution of fixpoint algorithms in different
systems. We will furthermore describe the compensation function in terms of this model.

4.3.1 Fixpoint Algorithms as Dataflows

We restrict our discussion to algorithms that can be expressed by a general fixpoint
paradigm taken from Bertsekas and Tsitsiklis [22]. Given an n-dimensional state vector
x ∈ Rn, and an update function f(x) : Rn → Rn, each iteration consists of an application
of f to x: x(t+1) = f(x(t)). The algorithm terminates when we find the fixpoint x∗ of the
series x(0), x(1), x(2), . . . , such that x∗ = f(x∗). The update function f is decomposed

into component-wise update functions fi. The function fi(x) updates component x
(t)
i

such that x
(t+1)
i = fi(x

(t)
1 , x

(t)
2 , . . . , x

(t)
n ) for i = 1, . . . , n. An update function fi might

only depend on a few components of the state x(t). The structure of these computational
dependencies of the data is described by the dependency graph Gdep = (N,E), where the
vertices N = {x1, . . . , xn} represent the components of x, and the edges E represent the
dependencies among the components: (i, j) ∈ E ⇔ fi depends on xj . The dependencies
between the components might be subject to additional parameters, e.g., distance,
conditional probability, transition probability, etc, depending on the semantics of the
application. We denote the parameter of the dependency between components xi and
xj with aij . This dependency parameter can be thought of as the weight of the edge
eij in Gdep . We denote the adjacent neighbors of xi in Gdep, i.e., the computational
dependencies of xi, as Γi (cf. Figure 4.3).

We define a simple programming model for implementing iterative algorithms based on
the introduced notion of fixpoints. Each algorithm is expressed by two functions. The
first function is called initialize and creates the components of the initial state x(0):

initialize : i→ x
(0)
i

The second function, termed update, implements the component update function fi.
This function needs as input the states of the components which xi depends on, and
possibly parameters for these dependencies. The states and dependency parameters
necessary for recomputing component xi at iteration t are captured in the dependency

set D
(t)
i = {(x(t)j , aij) |x

(t)
j ∈ Γi}. The function computes x

(t+1)
i from the dependency set

D
(t)
i :

update : D
(t)
i → x

(t+1)
i
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Figure 4.3: Adjacent neighbors Γi of xi in the dependency graph, a representation of xi’s
computational dependencies.

We refer to the union D(t) of the dependency sets D
(t)
i for all components i as the

workset. In order to detect the convergence of the fixpoint algorithm in distributed

settings, we need two more functions. The function aggregate : (x
(t+1)
i , x

(t)
i , agg)→ agg

incrementally computes a global aggregate agg from the current value x
(t+1)
i and the

previous value x
(t)
i of each component xi. It is a commutative and associative function.

The function converged : agg → {true, false} decides whether the algorithm has
converged by inspecting the current global aggregate.

Example: PageRank (c.f., Section 2.4.3) is an iterative method for ranking web pages
based on the underlying link structure. Initially, every page has the same rank. At each
iteration, every page uniformly distributes its rank to all pages that it links to, and
recomputes its rank by adding up the partial ranks it receives. The algorithm converges
when the ranks of the individual pages do not change anymore. For PageRank, we start
with a uniform rank distribution by initializing each xi to 1

n , where n is the total number
of vertices in the graph. The components of x are the vertices in the graph, each vertex
depends on its incident neighbors, and the dependency parameters correspond to the
transition probabilities between vertices. At each iteration, every vertex recomputes its
rank from its incident neighbors proportionally to the transition probabilities:

update : D
(t)
i → 0.85

∑
D

(t)
i

aijx
(t)
j + 0.15

1

n
.

The aggregation function computes the L1-norm of the difference between the previous
and the current PageRank solution, by summing up the differences between the previous
and current ranks, and the algorithm converges when this difference becomes less than a
given threshold.
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4.3.2 Bulk-Synchronous Parallel Execution of Fixpoint Algorithms

This fixpoint mathematical model is amenable to a simple synchronous parallelization

scheme. Computation of x
(t+1)
i involves two steps:

1. Collect the states x
(t)
j and parameters aij for all dependencies j ∈ Γi.

2. Form the dependency set D
(t)
i , and invoke update to obtain x

(t+1)
i .

Assume that the vertices of the dependency graph are represented as tuples (n, x
(t)
n ) of

component index n and state x
(t)
n . The edges of the dependency graph are represented as

tuples (i, j, aij), indicating that component xi depends on component xj with parameter
aij . If the datasets containing the states and dependency graph are co-partitioned, then
the first step can be executed by a local join between vertices and their corresponding
edges on the component index n = j. For executing step 2, the result of the join is

projected to the tuple (i, x
(t)
j , aij) and grouped on the component index i to form the

dependency set D
(t)
i . The update function then aggregates D

(t)
i to compute the new state

x
(t+1)
i . This parallelization scheme, which can be summarized by treating a single iteration

as a join followed by an aggregation, is a special case of the Bulk Synchronous Parallel
(BSP) [174] paradigm. BSP models parallel computation as local computation (the join
part) followed by message passing between independent processors (the aggregation part).
Analogously to the execution of a superstep in BSP, we assume that the execution of a
single iteration is synchronized among all participating computational units. We illustrate
and prototype our proposed recovery scheme using a general data flow system with a
programming model that extends MapReduce. For implementation, we use Apache
Flink (c.f., Section 2.3.2) and will use its operator notation in the following. However,
the ideas presented are applicable to other data flow systems with support for iterative
or recursive queries.

To ensure efficient execution of fixpoint algorithms, Apache Flink offers two distinct
programming abstractions for iterations, as introduced in Section 2.3.2. With bulk
iterations, each iteration completely recomputes the state vector x(t+1) from the previous
iteration’s result x(t). Figure 4.4a shows a generic logical plan for modeling fixpoint
algorithms as presented in Section 4.3.1 using the bulk iteration abstraction (ignore the

dotted box for now). The input consists of records (n, x
(t)
n ) representing the components

of the state x(t) on the one hand, and of records (i, j, aij) representing the dependencies
with parameters on the other hand (cf. Section 4.3.1). The data flow program starts with

a “dependency join”, performed by a Join operator, which joins the components x
(t)
i

with their corresponding dependencies and parameters to form the elements (i, x
(t)
j , aij)

of the dependency set D
(t)
i . The “update aggregation” operator groups the result of the
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(a) Bulk fixpoint algorithm in Apache Flink.
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(b) Incremental fixpoint algorithm in
Apache Flink.

Figure 4.4: Templates for modeling fixpoint algorithms as Flink dataflows.

join on the component index i to form the dependency set D
(t)
i , and applies the update

function to compute x
(t+1)
i from the dependency set. The “convergence check” operator

joins and compares the newly computed state x
(t+1)
i with the previous state x

(t)
n on n = i.

From the difference between the components, the operator computes a global aggregate
using the aggregate function. A mechanism for efficient computation of distributive
aggregates, similar to the aggregators in Pregel [120], invokes the converged function to
decide whether to trigger a successive iteration (for simplicity reasons we omit this from
the figure). If the algorithm has not converged, the “convergence check” operator feeds

the records (i, x
(t+1)
i ) that form x(t+1) into the next iteration.

The second form of iterations, called delta iterations are optimized for algorithms that
only partially recompute the state x(t) in each iteration. A generic logical plan for fixpoint
algorithms using this strategy is shown in Figure 4.4b. Like the bulk iteration variant, the
plan models the two steps from the fixpoint model described in Section 4.3.1. It differs
from the bulk iteration plan in that it does not feed back the entire state at the end of

an iteration, but only the dependency sets D
(t)
i for the fraction of components that will

be updated in the next iteration (c.f., the feedback edge from the “recreate dependencies”
operator to the workset in Figure 4.4b). The system updates the state of the algorithm
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using the changed components rather than fully recomputing it. Hence, this plan exploits
the fact that certain components converge earlier than others, as dependency sets are fed
back selectively only for those components whose state needs to be updated. In addition
to the two inputs from the bulk iteration variant, this plan has a third input with the
initial version of the workset D(0). The creation of D(0) depends on the semantics of the
application, but in most cases, D(0) is simply the union of all initial dependency sets.

In the plan shown in Figure 4.4b, the “candidate creation” operator groups the elements

of the workset on the component index i to form the dependency sets D
(t)
i and applies the

update function to compute a candidate update for each x
(t+1)
i from the corresponding

dependency set. The “state update” operator joins the candidate with the corresponding

component from x(t) on the component index i and decides whether to set x
(t+1)
i to the

candidate value. If an update occurs, the system emits a record (i, x
(t+1)
i ) containing the

updated component to the “recreate dependencies” operator, which joins the updated
components with the dependencies and parameters. In addition, the records are efficiently
merged with the current state (e.g., via index merging - see rightmost feedback edge in
the figure). As in the bulk iteration variant, we represent the dependencies as (i, j, aij),
and join them on j = i. The operator emits elements of the dependency sets to form the
workset D(t+1) for the next iteration. The algorithm converges when an iteration creates
no new dependency sets, i.e. when the workset D(t+1) is empty. We restrict ourselves to
algorithms that follow the plans of Figures 4.4a and 4.4b, where the dataset holding the
dependencies can be either a materialized or a non-materialized view, i.e., it may be the
result of an arbitrary plan.

4.3.3 Fixpoint Algorithms as Vertex-Centric Programs

We furthermore discuss the execution of fixpoint algorithms in vertex-centric graph
processing systems (c.f., Section 2.3.4). In these systems, programs directly operate
on a graph in which vertices hold state and send messages to other vertices along the
edges. By receiving messages, vertices update their state. Vertex-centric BSP systems
are able to execute incremental iterations by maintaining mutable state and offering the
choice whether to update a vertex’s state and propagate the changes in the course of an
iteration. Furthermore, a vertex can be de-activated, and will only be re-activated if it
receives a message from another vertex. Our programming model defined in Section 4.3.1
executes in Pregel-like systems as follows. We use the component values as the vertex

values of the graph that we operates on: the state of vertex i in iteration t is x
(t)
i . The

edges of the dependency graph D correspond to the inverse of the edges of the graph

modeled in the Pregel-like system. The collection of the dependency set D
(t)
i for a vertex

i happens by having all its incident neighbors j send their vertex value x
(t)
j together with
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the appropriate edge value aij (the dependency parameter) to i. We implement update

function to compute x
(t)
i in the vertex-update function of the Pregel-like system; the

arguments to update are given by the messages received from neighbors. Convergence
detection via the agg function is implemented using Pregel’s distributed aggregators.

4.4 Forward Recovery via Compensation Functions

Next, we describe how to express compensations using a simple user-defined function
and discuss how to integrate this UDF into large-scale data processing systems to enable
optimistic recovery.

4.4.1 Abstraction of Compensation Functions as UDFs

Compensation functions could be arbitrary data flow plans themselves. However, we
find that it is sufficient to simply randomly re-initialize the lost parts of the state in
many cases. The algorithms will then take care of restoring the individual components
of the solution. Such compensation functions have the advantage that they are easy to
write for library implementors and easy to integrate into existing systems. We define
a simple signature for compensation functions, which takes the component index i, the

current component state x
(t)
i (which is null for lost components) and some algorithm

specific metadata (e.g., the number of vertices in a graph) as input and produces a valid

component state x
(t+1)
i for the following iteration:

compensate : (i, x
(t)
i ,metadata)→ x

(t+1)
i

In the following sections, we discuss how to efficiently integrate compensation functions
of this shape in Apache Flink and Apache Giraph.

4.4.2 Recovery of Bulk Iterative Dataflows

To integrate optimistic recovery to the bulk iterations model, we introduce a “compensate”
operator that takes as input the current state of components x(t) (dotted box in Fig-
ure 4.4a). The output of the compensation operator forms the input to the dependency
join operator. The system only executes the compensate operator after a failure: e.g., in
case of a failure at iteration t, the system finishes the current iteration and activates the
additional operator in the plan for iteration t+ 1. We note that the compensate operator
can be an arbitrary plan in itself. However, we found that compensation functions
embedded in a simple Map operator are adequate for a wide class of algorithms (see
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(a) PageRank as iterative data flow.
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Figure 4.5: Examples of fixpoint algorithms modeled as Flink dataflows.

Section 4.5). In addition, using a compensation function embedded in a Map operator
ensures fast recovery times without the need for data shuffling. The compensation
function often leverages lightweight meta-data from previous iterations that are stored in
a distributed fault-tolerant manner using a distributed locking service [38].

PageRank: Figure 4.5a shows the data flow plan for the PageRank algorithm, as derived
from the general plan in Section 4.3.2. The initial state x(0) consists of all pages p and
initial ranks r. The dependencies (s, t, prob) consist of the edges s → t of the graph,
weighted by the transition probability prob from page s to page t. The “find neighbors”
operator joins the pages with their outgoing links on p = s and creates tuples (t, c)
holding the partial rank c = r ∗ prob for the neighbors. The “recompute ranks” operator
groups the result of the “find neighbors” join on the target page t to recompute its rank
using PageRank’s update formula: 0.85 ∗

∑
c+ 0.15/n. It emits a tuple (t, rnew) that

contains the new rank to the “compare to old rank” operator, which joins these tuples
with the previous ranks on p = t and initiates the distributed aggregation necessary for
the convergence check. Finally, the “compare to old rank” operator emits tuples (p, r)
containing the pages and recomputed ranks. If PageRank has not converged, these tuples
form the input to the next iteration t+ 1.

In case of a failure, the system activates the additional Map operator called “fix ranks” in
the plan, as shown in Figure 4.5a. This operator executes the compensation function. A
simple compensation approach is to re-initialize the ranks of vertices in failed partitions
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uniformly and re-scale the ranks of the non-failed vertices, so that all ranks still sum
to unity (c.f., Algorithm 11). A requirement for this mechanism is that the system
knows the total number of vertices n, and keeps an aggregate statistic about of the
current number of vertices nnonfailed and the current total rank rnonfailed. Note that
these statistics can be maintained at virtually zero cost when computed together with
the convergence check by the distributed aggregation mechanism. Furthermore, these
statistics should be maintained anyways for ensuring and validating the numerical stability
of the computation, regardless of the approach to fault tolerance.

Algorithm 11: Compensation function for PageRank.

1 function fix-ranks-uniform(pid, r, n, nnonfailed, rnonfailed)
2 if pid is in failed partition:

3 return 1
n

4 else:
5 return (nnonfailed · r)/(n · rnonfailed)

4.4.3 Recovery of Delta Iterative Dataflows

Analogously to bulk iterations, we compensate a large class of delta iterations by a simple
Map operation, applied to the state at the beginning of the iteration subsequent to a
failure. Additionally, for delta iterations, the system needs to recreate all dependency sets
required to recompute the lost components. This is necessary because the recomputation
of a failed component might depend on another already converged component whose
state is not part of the workset anymore. In the plan from Figure 4.4b, the “recreate
dependencies” operator produces dependency sets from all components of the state
that were updated in the failing iteration, including components that were recreated
or adjusted by the compensation function. The system hence only needs to recreate
the necessary dependency sets originating from components that were not updated
in the failing iteration. To identify those non-updated components, the “state-update”
operator internally maintains a timestamp (e.g., the iteration number) for each component,
indicating its last update. In the iteration subsequent to a failure, a record for each
such component is emitted by the “state update” operator to the “recreate dependencies”
operator. The “recreate dependencies” operator joins these record with the dependencies,
creating the dependency sets D(t+1) for all components depending on it. From the output
of the “recreate dependencies” operator, we prune all elements that do not belong to a
lost component from these extra dependency sets. This is easily achieved by evaluating
the partitioning function on the element’s join key and checking whether it was assigned
to a failed machine. By means of this optimization, the system does not unnecessarily
recompute components that did not change in their dependent components and are not
required for recomputing a failed component.
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Connected Components [99]: This algorithm identifies the connected components
of an undirected graph, the maximum cardinality sets of vertices that can reach each
other. We initially assign to each vertex v a unique numeric label which serves as the
vertex’s state xi. At every iteration of the algorithm, each vertex replaces its label with
the minimum label of its neighbors. In our fixpoint programming model, we express it by

the function update : D
(t)
i → min

D
(t)
i

(x
(t)
j ). At convergence, the states of all vertices in a

connected component hold the same label, the minimum of the labels initially assigned
to the vertices of this component. Figure 4.5b shows a data flow plan for Connected
Components, derived from the general plan for delta iterations discussed in Section 4.3.2.
There are three inputs: The initial state x(0) consists of the initial labels, a set of tuples
(v, l) where v is a vertex of the graph and l is its label. Initially, each vertex has a unique
label. The dependencies and parameters for this problem map directly to the graph
structure, as each vertex depends on all its neighbors. We represent each edge of the
graph by a tuple (s, t), referring to the source vertex s and target vertex t of the edge.
The initial workset D(0) consists of candidate labels for all vertices, represented as tuples
(v, l), where l is a label of v’s neighbor (there is one tuple per neighbor of v).

Algorithm 12: Compensation function for Connected Components.

1 function fix-components(v, c)
2 if v is in failed partition:
3 return v
4 else:
5 return c

First, the “candidate label” operator groups the labels from the workset on the vertex v
and computes the minimum label lnew for each vertex v. The “label update” operator
joins the record containing the vertex and its candidate label lnew with the existing entry
and its label on v. If the candidate label lnew is smaller than the current label l, the

system updates the state x
(t)
v and the “label update” operator emits a tuple (v, lnew)

representing the vertex v with its new label lnew. The emitted tuples are joined with
the graph structure on s = v by the “label to neighbors” operator. This operator emits
tuples (t, l), where l is the new label and t is a neighbor vertex of the updated vertex v.
These tuples form the dependency sets for the next iteration. As D(t+1) only contains
vertices for which a neighbor updated its label, we do not unnecessarily recompute
components of vertices without a change in their neighborhood in the next iteration.
The algorithm converges once the system observes no more label changes during an
iteration by observing the number of records emitted from the “label update” operator.
As discussed, the system automatically recomputes the necessary dependency sets in case
of a failure in iteration t. Therefore, analogously to bulk iterations, the programmer’s
only task is to provide a record-at-a-time operation which applies the compensation
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function to the state x(t+1). Here, it is sufficient to set the label of vertices in failed
partitions back to its initial value (c.f., Algorithm 12).

4.4.4 Recovery in Vertex-Centric Programming

Analogously to Section 4.4.2, we propose to integrate the compensation function as a
vertex-centric operator into the programming model of Pregel-like vertex-centric graph
processing systems. Note that a compensation could be a full Pregel iteration. We will
again make use of our observation that simple compensations provide fast recovery and
are adequate for a wide variety of algorithms. We add the compensation function to the
Pregel vertex class as a new method, in which the user-supplied compensation code can
read aggregated values and modify the vertex state to bring it back to a condition from
which the executed algorithm will still converge. The general process of optimistically
recovering from a failure in Pregel works as described in Section 4.1: the system finishes
the iteration where the failure occurred, acquires new machines to replace the failed ones
(or re-distributes work to existing ones) and makes these replacement machines reload
the inputs assigned to the failed ones. At the beginning of the iteration subsequent to
the failure, the system invokes the compensate function on all vertices. Pseudocode for
the simple compensation function for PageRank from Algorithm 11 is shown below:

class CompensablePageRankVertex extends PageRankVertex {

...

void compensate(agg) {

if (vertexInFailedPartition()) {

setValue (1.0 / numVertices());

} else {

rescaledRank =

(agg.nonFailedVertices * getValue()) /

(agg.nonFailedRank * numVertices());

setValue(rescaledRank);

} } }

The vertex checks whether it belongs to the failed partition and either re-initializes its
value uniformly or re-scales it appropriately using aggregated values. Algorithms where
early de-activation of some vertices lead to parts of the graph converging early again
require special treatment: Vertices restored from failed partitions rely on having all their
dependent values sent to them by their neighbors after the compensation function was
applied. If a failed vertex had a neighbor that was inactive in the iteration subsequent to
the failure, it would not receive all necessary messages and might not be able to correctly
update its value. The system automatically solves this problem as follows: In the iteration
subsequent to a failure, the system wakes up all inactive vertices and asks them to send
their state to all adjacent neighbors that belong to a failed partition. Afterwards, it
deactivates them again. We already stated that vertex-centric graph processing is simply
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a special case of general distributed dataflow processing (c.f., Section 4.3.3). Hence, the
integration is also similar to the already discussed data flow integration.

4.5 Templates for Compensation UDFs of Compensable Algorithms

In order to demonstrate the applicability of our proposed approach to a wide range of
problems, we discuss three classes of large-scale data mining problems, taken from our
exemplary data mining problems in Section 2.4, which are solved by fixpoint algorithms.
For each class, we list several problem instances together with a brief mathematical
description and provide a generic compensation function as blueprint.

4.5.1 Link Analysis and Centrality in Networks

We first discuss centrality algorithms that compute and interpret the dominant eigenvector
of a large, sparse matrix representing a network, as introduced in Section 2.4.3. Prominent
examples are PageRank, Eigenvector centrality, Katz centrality and LineRank. Another
example of an eigenvector problem is Random Walk With Restart [99], which uses a
random walk biased towards a source vertex to compute the proximity of the remaining
vertices of the network to this source vertex. Also, the dominant eigenvector of the
modularity matrix [131] can be used to split the network into two communities of vertices
with a higher than expected number of edges between them.

Recall that solutions for the problems of this class are computed by some variant of the
Power Method [78], an iterative algorithm for computing the dominant eigenvector of a
matrix M . An iteration of the algorithm consists of a matrix-vector multiplication followed
by normalization to unit length. To model the Power Method as a fixpoint algorithm, we
operate on a sparse n×n matrix, whose entries correspond to the dependency parameters.
We uniformly initialize each component of the estimate of the dominant eigenvector to 1√

n
.

The update function computes the dot product of the i-th row of the matrix M and the

previous state x(t). We express it by the function update : D
(t)
i →

1
‖x(t)‖2

∑
D

(t)
i

aijx
(t)
j in

our fixpoint programming model. The result is normalized by the L2-norm of the previous
state, which can be efficiently computed using a distributed aggregation. The algorithm
converges when the L2-norm of the difference between the previous and the current state
becomes less than a given threshold. For failure compensation, it is enough to uniformly
re-initialize the lost components to 1√

n
, as the power method will still provably converge

to the dominant eigenvector afterwards [78]:

compensate : (i, x
(t)
i )→

{
1√
n

if i belongs to a failed partition

x
(t)
i otherwise
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Figure 4.6: Exemplary path enumeration problems.

This function suffices as base for compensating all of the above problems when they are
solved by the power method.

4.5.2 Path Enumeration Problems in Graphs

The second class of algorithms we discuss enumerate paths in large graphs and aggregate
their weights. Instances of this problem class include single-source reachability, single-
source shortest paths, single-source maximum reliability paths, minimum spanning tree
[79], as well as finding the connected components [99] of an undirected graph. Based
on the discussion in Section 2.4.4, instances of this problem class are solved by the
Generalized Jacobi algorithm [79], which is defined on an idempotent semiring (S,⊕,⊗).
The state vector x(0) is initialized using the identity element e of ⊗ for the source
vertex identity element ε of ⊕ for all other vertices. The algorithm operates on a given,
application-specific graph. The dependency parameters correspond to the edge weights
of this graph, taken from the set S, on which the semiring is defined. At iteration t,
the algorithm enumerates paths of length t with relaxation operations, computes the
weight of the paths with the ⊗ operation and aggregates these weights with the second,
idempotent operation ⊕. In our fixpoint programming model, we express it by the

function update : D
(t)
i →

⊕
D

(t)
i

(x
(t)
j ⊗ aij).

The algorithm converges to the optimal solution when no component of x(t) changes. For
single-source shortest distances, the algorithm works on the semiring (R ∪∞,min,+).
For all vertices but the source, the initial distance is set to ∞. At each iteration,
the algorithm tries to find a shorter distance by extending the current paths by one
edge, using relaxation operations. The obtained algorithm is the well known Bellman-
Ford algorithm (c.f. Figure 4.6a). For single-source reachability, the semiring used is
({0, 1},∧,∨) (c.f. Figure 4.6b). A dependency parameter aij is 1, if i is reachable from j
and 0 otherwise. The set of reachable vertices can then be found using boolean relaxation
operations. Finally, in single-source maximum reliability paths, the goal is to find the most
reliable paths from a given source vertex to all other vertices in the graph (c.f. Figure 4.6c).
A dependency parameter aij represents the probability of reaching vertex j from vertex i.
The semiring in use is ([0, 1],max, ·). To compensate failures in the distributed execution
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of the Generalized Jacobi algorithm, we can simply re-initialize the components lost due
to failure to ε, the identity element of ⊕. Bellman-Ford, for example, converges to the
optimal solution from any start vector x(0) which is element-wise greater than x∗ [22]:

compensate : (i, x
(t)
i )→


e if i is the source vertex

ε if ibelongs to a failed partition

x
(t)
i otherwise

4.5.3 Low-Rank Matrix Factorization

The last class of algorithms we focus on are latent factor models for recommendation
mining, as introduced in Section 2.4.1. The idea is to approximately factor a sparse m×n
matrix M into the product of two matrices U and V , such that M ≈ UV T . The m× k
matrix U models the latent features of the entities represented by the rows of M (e.g.,
users), while the n× k matrix V models the latent features of the entities represented by
the columns of M (e.g., news stories or products). Due to its simplicity and popularity, we
focus our efforts on the ALS technique for computing these models (c.f., Section 2.4.2).

Recall that, in order to find a factorization, ALS repeatedly keeps one of the unknown
matrices fixed, so that the other one can be optimally recomputed. That means for
example, that ui, the i-th row of U , can be recomputed by solving a least squares problem
including the i-th row of M and all the columns vj of V that correspond to non-zero
entries in the i-th row of M (c.f., Figure 4.7). ALS then rotates between recomputing
the rows of U in one step and the columns of V in the subsequent step until the training
error converges.

≈ ×

M
m × n

U
m × k

VT

k × n

Figure 4.7: Dependencies for recomputing a row of R.

In the case of a failure, we lose rows of U , rows of V and parts of M . We compensate as
follows: as we can always re-read the lost parts of M from stable storage, we approximately
re-compute lost rows of U and V by solving the least squares problems using the remaining
feature vectors (ignoring the lost ones). If all necessary feature vectors for a row of U or
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V are lost, we randomly re-initialize it:

compensate : (i, x
(t)
i )→

{
random vector ∈ [0, 1]k if i is lost

x
(t)
i otherwise

Matrix factorization with ALS is a non-convex problem [73], and our compensation
function represents a jump in the parameter space that might lead to a different minimum.
We therefore empirically validate our approach in Section 4.6.4 to show its applicability
to real-world data.

4.6 Experiments

To evaluate the benefit of our proposed recovery mechanism, we run experiments on
large datasets and simulate failures. Our simulation omits the time required for failure
detection and provisioning of new machines or re-distributed work, as this has to be
done for optimistic as well as pessimistic recovery in the same manner and therefore
incurs the same overhead. The experimental setup for our evaluation is the following:
the cluster consists of 26 machines running Java 7, Hadoop’s distributed filesystem
(HDFS) 1.0.4 and a customized version of Apache Flink. Each machine has two 4-core
Opteron CPUs, 32 GB memory and four 1 TB disk drives. We also run experiments
with Apache Giraph [10], an open-source implementation of Pregel [120], to validate
our integration into vertex-centric systems. We use three publicy available datasets for
our experiments: a webgraph called Webbase [28,176], which consists of 1,019,903,190
links between 115,657,290 webpages, a snapshot of Twitter’s social network [39, 172],
which contains 1,963,263,821 follower links between 51,217,936 users and a dataset of
717,872,016 ratings that 1,823,179 users gave to 136,736 songs in the Yahoo! Music
community [181].

4.6.1 Failure-free Performance

We compare our proposed optimistic approach to a pessimistic strategy that writes
distributed checkpoints. When checkpointing is enabled, the checkpoints are written to
HDFS in a binary format with the default replication factor of three. Analogously to the
approaches taken in Pregel and GraphLab, we checkpoint state as well as communicated
dependencies [117,120]. We run each algorithm with a degree of parallelism of 208 (one
worker per core). We look at the failure-free performance of optimistic and pessimistic
recovery, in order to measure the overhead introduced by distributed checkpointing.
Figure 4.8a shows the application of PageRank on the Webbase dataset. The x axis
shows the iteration number and the y axis shows the time (in seconds) it took the system
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(b) Failure-free performance of Connected
Components on the Twitter dataset.

Figure 4.8: Failure-free performance.

to complete the iteration. The algorithm converges after 39 iterations. The runtime with
checkpointing every iteration is 79 minutes, while optimistic recovery reduces the runtime
to 14 minutes. The performance of the optimistic approach is equal to the performance
of running without a fault tolerance mechanism, with an iteration lasting roughly 20
seconds. We see that the pessimistic approach introduces an overhead of more than
factor 5 regarding the execution time of every iteration that includes a checkpoint.

Writing checkpoints only at a certain interval improves this situation, but trades off
the time it takes to write a checkpoint with the time required to repeat the iterations
conducted since the last checkpoint in case of a failure. If we for example checkpoint
every fifth iteration, the incurred overhead to the runtime compared to the optimal
failure-free performance is still 82%, approximately 11.5 minutes. We see that the
optimistic approach is able to outperform a pessimistic one by a factor of two to five
in this case. We note that in these experiments, this was the only job running in the
cluster. In busy clusters, where a lot of concurrent jobs compete for I/O and network
bandwidth, the negative effect of the overhead of checkpointing might be even more
dramatic. Figure 4.8b shows the failure-free performance of Connected Components
applied to the Twitter dataset. The checkpointing overhead varies between the iterations,
due to the incremental character of the execution. With our optimistic approach, the
execution takes less than 5 minutes. Activating checkpointing in every iteration increases
the runtime to 19 minutes. We see that checkpointing results in a 3× to 4× increased
runtime during the first iterations until the majority of vertices converge. Taking a
checkpoint in the first iteration takes even longer than running the whole job with our
optimistic scheme. After iteration 4, the majority of the state has converged, which
results in a smaller workset and substantially reduces the checkpointing overhead. Again,
the optimistic approach outperforms a pessimistic one that takes an early checkpoint by
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Figure 4.9: Recovery performance in Connected Components.

at least a factor of two. Our experiments suggest that the overhead of our optimistic
approach in the failure-free case (collecting few global statistics using the distributed
aggregation mechanism) is virtually zero. We observe that, in the absence of failures,
our prototype has the same performance as Apache Flink with checkpointing turned off,
therefore we conclude that it has optimal failure-free performance.

4.6.2 Simulated Recovery Performance

In the following, we simulate the failure of one machine, thereby losing 8 parallel partitions
of the solution. We simulate failures by dropping the parts of the state x that were
assigned to the failing partitions in the failing iteration. Additionally, we discard 50% of
the messages sent from the failing partitions, simulating the fact that the machine failed
during the iteration and did not complete all necessary inter-machine communication.
After the failing iteration, our prototype applies the compensation function and finishes
the execution.

To evaluate the recovery of delta iterations, we run the Connected Components algorithm
on the Twitter dataset. We simulate failures in different iterations and apply the
compensation function. Figure 4.9a shows the overall number of iterations as well as
their duration. The figure illustrates that Connected Components is very robust against
failures when paired with our compensation function. Single failures in iterations 4
and 6 do not produce additional iterations, but only cause an increase in the runtime
of the after next iteration by 45 seconds (which amounts to an increase of 15% in the
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overall runtime). This happens because the system reactivates the neighbors of failed
vertices in the iteration after the failure and by this, triggers the recomputation of the
failed vertices in the next iteration. When we simulate multiple failures of different
machines during one run, we observe that this process simply happens twice during the
execution: The compensation of failures in iterations 4 and 6 or 5 and 8 during one
run produces an overhead of approximately 35% compared to the failure-free execution.
To investigate the effects of a drastic failure, we simulate a simultaneous failure of 5
machines in iteration 4 and repeat this for iteration 6. We again observe fast recovery:
in both cases the overhead is less than 30% compared to the failure-free performance. In
all experiments, the additional work caused by the optimistic recovery amounts to small
a fraction of the cost of writing a single checkpoint in an early iteration. The execution
with a compensated single machine failure takes at most 65 seconds longer than the
failure-free run, while checkpointing a single early iteration alone induces an overhead of
two to five minutes. Additional to writing the checkpoints, a pessimistic approach with a
checkpointing interval would have to repeat all the iterations since the last checkpoint.
Figure 4.9b illustrates the runtimes of a pessimistic approach (with a checkpoint interval
of 2 iterations) to our optimistic approach. The times for the pessimistic approach are
composed of the average execution time, the average time for writing checkpoints and
the execution time for iterations that need to be repeated. The figure lists the runtime of
both approaches for executions with no failures, a single failure in iteration 4 and multiple
failures during one run in iterations 4 and 6. Figure 4.9b shows that our optimistic
approach is more than twice as fast in the failure-free case and at the same time provides
faster recovery than a pessimistic approach in all cases. The robustness in Connected
Components is due to the sparse computational dependencies of the problem. Every
minimum label propagates through its component of the graph. As social networks
typically have a short average distance between vertices, the majority of the vertices find
their minimum label relatively early and converge. After failure compensation in a later
iteration, most vertices have a non-failed neighbor that has already found the minimum
label, which they immediately receive and converge.

In order to evaluate the recovery of bulk iterations, we run PageRank on the Webbase
dataset until convergence. We simulate failures in different iterations of PageRank and
measure the number of iterations it takes the optimistic recovery mechanism to converge
afterwards. Figure 4.10a shows the convergence behavior for the simulated failures in
different early iterations. The x axis shows the iteration number. The y axis shows the
L1-norm of the difference of the current estimate x(t) of the PageRank vector in iteration
t to the PageRank vector x(t−1) in the previous iteration t− 1 in logarithmic scale. We
notice that the optimistic recovery is able to handle failures in early iterations such as
the third, tenth, or fifteenth iteration extremely well with the compensation resulting
only in maximum 3 additional iterations (as can be seen in the right bottom corner of
Figure 4.10a). In additional experiments, we observe the same behavior for multiple
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Figure 4.10: Recovery performance in PageRank.

failures during one run in early iterations: failures in iterations 2 and 10 or 5 and 15 also
only result in at most 3 additional iterations. Next, we simulate a simultaneous failure of
five machines to investigate the effect of drastic failures: such a failure costs no overhead
when it happens in iteration 3 and results in only 6 more iterations when it happens in
iteration 10.

When we simulate failures in later iterations, we note that they cause more overhead:
a failure in iteration 25 needs 12 more iterations to reach convergence, while a failure
in iteration 35 triggers 22 additional iterations compared to the failure-free case. This
behavior can be explained as follows: a compensation conducts a random jump in the
space of possible intermediate solutions. In later iterations, the algorithm is closer to
the fixpoint, hence the random jump increases the distance to the fixpoint with a higher
probability than in early iterations where the algorithm is far from the fixpoint. For a
failure in iteration 35, executing these additional 22 iterations would incur an overhead
of approximately eight minutes. Compared to a pessimistic approach with a checkpoint
interval of five, the overhead is still less, as the pessimistic approach would have to restart
from the checkpointed state of iteration 30 and again write a total of 7 checkpoints,
amounting to a total overhead of more than 12 minutes. Figure 4.10b summarizes our
findings about PageRank and compares the runtimes of our optimistic scheme to such
a pessimistic approach with a checkpoint interval of five. The times for the pessimistic
approach comprise the average execution time, the average time for writing checkpoints
and the execution time for iterations that need to be repeated. We see that the optimistic
approach outperforms the pessimistic one by nearly a factor of two in the failure-free
case and for all cases, its overall runtime is shorther in light of failures.
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For failures in later iterations, our findings suggest that hybrid approaches which use
the optimistic approach for early iterations and switch to a pessimistic strategy later
are needed. The decision when to switch could be made by observing the slope of the
convergence rate. Once it starts flattening, the algorithm comes closer to the fixpoint
and it would be beneficial to switch to a checkpoint-based recovery strategy. We plan to
investigate this as part of our future work.

4.6.3 Recovery in Vertex-Centric BSP

We run an experiment with a Pregel-like system to showcase that optimistic recovery is
applicable to vertex centric systems. We use a modified version of Apache Giraph 0.1 on
a single machine with 16 workers and compute PageRank on a small social graph. We
use the Slashdot-Zoo dataset [111, 161] which contains 79,120 vertices and 515,397 edges.
Analogous to previous experiments, we simulate a failure of one worker in iteration 15
and compensate the intermediate. We observe an increase in the error directly after
failure, yet the algorithm is able to quickly recover from the failure and steadily converges
to the true PageRank, analogous to previous experiments.

4.6.4 Empirical Validation of Compensability in ALS

We empirically validate the compensability of Alternating Least Squares for low-rank
matrix factorization discussed in Section 4.5.3. We use the Yahoo Songs dataset for
this. To show the compensability of Alternating Least Squares, we implement a popular
variant of the algorithm aimed at handling ratings [189] as data flow program. Recall
that ALS finds the factorization M = UV T by rotating between recomputing the rows
of U in one step and the columns of V in the subsequent step until convergence. This
is illustrated in the data flow plan in Figure Figure 4.11a: we re-compute U from an
initial V using a join-operator followed by a reduce-operator and repeat these steps
to subsequently re-compute V . Next, we feed back V and repeat this process until
convergence (c.f., Algorithm 5 in Section 2.4.2).

Next, we simulate failures while computing a factorization of rank 10. We simulate a
single failure in iteration 5, a single failure in iteration 10 and finally have a run with
multiple failures where both failures happen after another. We measure the training error
(by the root mean squared error, RMSE, shown in Figure 4.11b) of the factorization over
15 iterations. Our results show that failures result in a short increase of the error, yet until
iteration 15, the error again equals that of the failure-free case. These results indicate
that the ALS algorithm paired with the provided compensation strategy described in
Section 4.5.3 is very robust to all failures, which only cause a short-lived distortion in the
convergence behavior. We also repeat this experiment for the Movielens [129] dataset,
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Figure 4.11: Experiments with Alternating Least Squares for matrix factorization.

which contains 1 million ratings. The results show in Figure 4.12 mirror our findings from
the previous experiment. We first run ALS without any failures and convergence after
20 iterations, as illustrated in the top-left plot. Next, we simulate failures in the third,
fifth and tenth iteration and again measure the convergence with respect to the training
error. We run this experiment for a loss of 5%, 15% and 25% of the feature vectors in
the factorization. We see that in all cases, our compensation for ALS quickly recovers
from the failure and always manages to still convergence without requiring additional
iterations.

4.7 Related Work

Executing iterative algorithms efficiently in parallel has received a lot of attention recently,
resulting in graph-based systems [117,120], and in the integration of iterations into data
flow systems [32,62,124,128,186]. The techniques proposed in this chapter are applicable
to all systems that follow a dataflow or a vertex-centric programming paradigm.

While the robust characteristics of fixpoint algorithms have been known for decades,
we are not aware of an approach that leverages these characteristics for the recovery of
distributed, data-parallel execution of such algorithms. Rather, most distributed data
processing systems [49, 120], distributed storage systems [75], and recently real-time
analytical systems [186] use pessimistic approaches based on periodic checkpointing and
replay to recover lost state.
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Figure 4.12: Optimistic recovery of failures in ALS on the Movielens dataset.

Systems such as Spark [186] offer recovery by recomputing lost partitions based on their
lineage. The complex data dependencies of fixpoint algorithms however may require a
full recomputation of the algorithm state (c.f., Section 4.1). While the authors propose
to use efficient in-memory checkpoints in that case, such an approach still increases the
resource usage of the cluster, as several copies of the data to checkpoint have to be held in
memory. During execution such a recovery strategy competes with the actual algorithm
in terms of memory and network bandwidth.

Confined Recovery [120] in Pregel limits recovery to the partitions lost in a failure. The
state of lost partitions is recalculated from the logs of outgoing messages of all non-failed
machines in case of a failure. Confined recovery is still a pessimistic approach, which
requires an increase in the amount of checkpointed data, as all outgoing messages of the
system have to be logged.
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Similar to our compensation function, user-defined functions to enable optimistic recovery
have been proposed for long-lived transactions. The ConTract Model is a mechanism
for handling long-lived computations in a database context [150]. Sagas describe the
concept of breaking long lived-transactions into a collection of subtransactions [71]. In
such systems, user-defined compensation actions are triggered in response to violations
of invariants or failures of nested sub-transations during execution. Due to the difference
in context (transactional data processing versus analytical data processing) to our work,
we could not compare against these approaches.

4.8 Conclusion

We present a novel optimistic recovery mechanism for distributed iterative data processing
using a general fixpoint programming model. Our approach eliminates the need to
checkpoint to stable storage. In case of a failure, we leverage a user-defined compensation
function to algorithmically bring the intermediary state of the iterative algorithm back
into a form from which the algorithm still converges to the correct solution. Furthermore,
we discuss how to integrate the proposed recovery mechanism into a data flow system.
We model three wide classes of problems (link analysis and centrality in networks, path
enumeration in graphs, and low-rank matrix factorization) as fixpoint algorithms and
describe generic compensation functions that in many cases provably converge. Finally,
we present empirical evidence that shows that our proposed optimistic approach provides
optimal failure-free performance (virtually zero overhead in absence of failures). At the
same time, it provides faster recovery in the majority of cases. For incrementally iterative
algorithms, the recovery overhead of our approach is less than a fifth of the time it takes
a pessimistic approach to only checkpoint an early intermediate state of the computation.
For recovery of early iterations of bulk iterative algorithms, the induced overhead to the
runtime is less than 10% and again our approach outperforms a pessimistic one in all
evaluated cases.

For convex problems with a single optimum, optimistic recovery from failures will provably
retain the optimal solution, if the compensation is constructed accordingly. Examples of
such cases are the compensation functions for spectral centrality measures in Section 4.5.1,
as well as the compensation function for the path-enumeration-based graph algorithms in
Section 4.5.2. The situation is different for non-convex problems with many local optima.
Compensating a failure typically corresponds to a random jump in the parameter space
of the algorithm and might lead to different local optima as a result in these cases. Often,
this behavior might be acceptable. Yet it is important for users to be aware of the fact
that optimistic recovery from a failure might result in an outcome different from the
failure-free case in non-convex problems. Users can switch back to pessimistic recovery if
they wish to prevent this behavior.
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5.1 Problem Statement

The previous chapters 3 and 4 focused on efficient, scalable model training in massively
parallel dataflow sytems and related systems issues. However, properly deploying ML
in real-world settings requires more than efficient, scalable model training alone. Other
‘meta’ issues must be dealt with as well, such as model selection, parameter tuning
and estimating model generalizability to new data. Another potential issue is that
some complex ML applications may require more than one model to achieve satisfactory
accuracy. Data scientists typically address the first set of issues using cross-validation for
estimating prediction quality of a model for a given problem [37,56, 72], while the latter
is addressed using ensemble learning to create a stronger model by combining weaker
models [34, 115]. The wide variety of meta learning techniques1 have two common steps.
First, samples are generated from the input data. Second, ML models are trained and
built on these samples. Although efficiently conducting cross-validation and ensemble
learning at scale has been recognized as an important challenge [108,126], existing systems
for distributed, scalable ML [13, 76, 89, 163] lack a comprehensive meta learning layer
supporting both steps of meta learning. These systems typically provide data-parallel
techniques to efficiently perform model training and evaluation of the latter step, but do
not readily support efficient, scalable sample generation required in the first step.

The focus of this chapter is in developing a scalable sample generation algorithm to support
meta learning which meets three key desiderata. First, the common range of sampling
methods used by different meta learning techniques must be supported. Adaption to
a particular sample generation technique must only require minimal modification of
the algorithm. Second, for reasons of efficiency, the algorithm must only conduct a
single pass over the data, even for a large number of samples to generate. Third, the
algorithm must be general enough to be used with a range of distributed data processing
abstractions (c.f., Section 2.3). Obtaining these desiderata for sample generation from
large datasets in a ML setting is challenging for three reasons. First, many scalable
ML systems represent data as block-partitioned matrices [76,89,99], which leads to the
rows and columns of the input matrix being spread across multiple blocks, each stored
separately, potentially on different machines in a distributed file system. Thus, sample

1note that while we refer to cross-validation and ensemble learning as “meta learning”, the term is often
used in a different context [136]
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generation must also consume distributed, blocked data as input and produce distributed,
block-partitioned sample matrices as output. If we choose to sample a row or column
from the given data, we must ensure that it is correctly restored in the newly formed
blocks of the generated sample matrix. The second challenge is that meta learning
techniques may require to read a composition of generated samples (e.g., during training
on k − 1 folds in a round of k-fold cross-validation, see Section 5.9.2 for details). This
composition is not easily possible with a blocked representation. Näıve solutions for this
challenge pose a scalability bottleneck as they generate many copies of the input data.
The third challenge arises from the difficulty of mapping particular sampling techniques
to a distributed, shared-nothing setting. For example, sampling with replacement is
difficult to conduct in a distributed setting, as the number of occurrences of individual
observations in a sample is correlated [48,141]. Because of this correlation, we cannot
easily generate the components of a sample with replacement in parallel, for reasons
described in Section 5.8.

5.2 Contributions

We address the challenges introduced in Section 5.1 as follows. We present a general
algorithm for distributed sample generation from block-partitioned matrices in a single
pass over the data, which leverages skip-ahead random number generators to sample
partitioned rows or columns in parallel (c.f., Section 5.7). We discuss how to efficiently
generate samples for a variety of meta learning techniques via a user-defined sampling
function embeddable in our algorithm (c.f., Section 5.9). This approach allows running
different sampling techniques by modifying only a few lines of code while still guaranteeing
efficient sample generation. We show how our method supports distributed sampling
with replacement by leveraging an approach to compute a multinomial random variate
in a distributed, parallel fashion (c.f. 5.8). Furthermore, we extend our algorithm
to support generating blocked training sets for k-fold cross-validation, which requires
aggregate size almost equal to the given data (c.f., Section 5.9.2). We close the chapter
with a thorough experimental evaluation of our algorithm on datasets with billions of
datapoints (c.f., Section 5.10).

5.3 The Role of Meta Learning in Deploying Machine Learning Models

This chapter’s running example for the role of meta learning in ML involves the use
case of automatic spam detection. Given a dataset of labeled emails, both spam and
non-spam, obtain a predictive model which can accurately classify newly arriving emails
as spam or non-spam. One example of a predictive model would be a k-nearest neighbor
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(k-NN) classifier, which for a given unseen email determines its label using labels of the
k most similar emails in the training data. The value of k serves as a hyperparameter
for k-NN, and must be tuned to gain sufficient quality of the learned classifier. An
example for automating the tuning of the hyperparameter in k-NN using hold-out test
cross-validation would work as follows. First, we draw three disjoint samples from the
mails. Next, we train nearest-neighbor classifiers with different values for k on the first
sample (the training set). Then, we evaluate the accuracy of the resulting classifiers for
predicting the labels of unseen mails in the second sample (the validation set), and select
the value for k with the best performance. Finally, we evaluate the generalization error
of the resulting classifier on the unseen mails in the third sample (the test set). Other
ML classifiers have similar hyperparameters which can be tuned using cross-validation
in a comparable way. For the sake of simplicity, we only talk about generating two
different samples (training set and test set) in most examples of this chapter. Note that
all techniques presented here apply for the general case with train set, validation set and
test set.

A complementary meta learning technique is ensemble learning. Ensemble learning builds
a stronger model by combining a set of weaker models [34, 115]. In our case, we draw
many independent subsamples of the email corpus, train a classifier on each of them and
combine the predictions of these classifiers afterwards. Datasets for such ML use cases
have a matrix-representation, where rows correspond to training instances and columns
to instance features. For the spam detection example, the matrix has a row for each email,
and a column for each feature (e.g., occurrence count for a term ‘mortgage’ in email text,
label as spam or non-spam). Thus, element (i, j) in the matrix would be the value of
feature j for email i. Although our running example is small for explanatory purposes, we
note a real-world dataset would have millions of rows (emails) and thousands of columns
(features). Such a high number of features arises for example from a sparse representation
of an email as vector in the space of all possible terms (hundreds of thousands for the
english language alone) and their frequently occurring combinations (n-grams).

5.4 Physical Data Representation in Large-scale Machine Learning Systems

Although meta learning techniques are straightforward to implement on a single machine
with random access to the data, efficient implementations are difficult when the input
data is block-partitioned and stored on different machines in a distributed filesystem
in a shared-nothing architecture. However, block-partitioning provides significant per-
formance benefits, including a reduction in the number of tuples required to represent
and process a matrix, block-level compression, and the optimization of operations like
matrix multiplication on a block-level basis. Such benefits have led to the widespread
adoption of block-partitioned matrices in several parallel data platforms [9,76,89,99,126].
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Figure 5.1: Sample dataset representation: matrix partitioned into blocks, stored on
different machines in distributed filesystem.

Figure 5.1 illustrates our example dataset as a block-partitioned matrix in a distributed
filesystem. As shown in Figure 5.1(a), the data is represented as a 6× 4 matrix M where
each row represents an email and each column a feature. The matrix is divided into
square blocks according to a chosen block size. In our example, we choose a block size of
2× 2, resulting in six different blocks, as shown in Figure 5.1(b). We refer to individual
blocks using horizontal and vertical block indices, e.g., M2,1 denotes the block in the
second row and first column of blocks. Blocks are stored on different machines across the
distributed file system, where the assignment of blocks to machines is usually random, as
in Figure 5.1(c). As we discuss in subsequent sections, this distributed block-partitioned
data representation creates multiple challenges for efficient sample generation for scalable
meta learning.

5.5 Distributed Sampling with Skip-Ahead Pseudo Random Number Generators

In the following, we develop an algorithm for generating sample matrices from a large,
block-partitioned matrix stored in a shared-nothing cluster. We discuss the case of
generating sample matrices from rows of the input matrix. However, the same techniques
apply to sampling columns of the input matrix as well. We define the sample generation
task as follows. Given an m×n input matrix M , stored in blocks of size d×d, we generate
N sample matrices S(1), . . . , S(N) such that the rows of a particular sample matrix S(i)

are randomly drawn from M . We store the sample matrices in blocks of size d× d. Let
r be a row of M partitioned in blocks with the horizontal block index b. Let v be the
number of vertical blocks of M . Then r is distributed over the v blocks, Mb,1, . . . ,Mb,v.
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Figure 5.2: Parallel invocation of sampling on different machines that process partitions
of the same row.

All machines processing one of these blocks must come to the same conclusion regarding
the occurrences of r in a sample matrix S(i).

Figure 5.2 illustrates the scenario for our mail example. We must determine in which sam-
ple matrices mail 3 will occur. Due to the blocked representation, the row corresponding
to mail 3 is partitioned and its partitions are contained in blocks M2,1 and M2,2 which
are stored on different machines. The sample generation algorithm invokes sampling in
parallel on both machines holding the blocks, and must give a deterministic and therefore
reproducible result. For two invocations with the same row on different machines, it must
return exactly the same destination in the sample matrices. Otherwise, we could not
guarantee that the row is correctly restored in the sample matrix as row partitions might
be missing or placed in the wrong order. Furthermore, this consistency should ideally be
guaranteed without requiring inter-machine communication in order to achieve a high
degree of parallelism. We solve this challenge by carefully choosing the pseudo random
number generator (PRNG) which our algorithm deploys. A PRNG generates a sequence
of values p0, p1, p2, . . . that are approximately uniformly distributed. The generation is
initialized with a seed s and typically uses a recursive transition function, ϕ, such that
pi = ϕ(pi−1). A first step towards guaranteeing consistent results in our algorithm is to
use the same seed s on all machines. This ensures all PRNGs produce the exact same
random sequence. Second, we use the unique index of a row as the position to jump to in
the random sequence. For a row with index j, sampling must leverage the j-th element,
pj , from the produced random sequence. This method will provide consistent results
when partitions of row j are processed in parallel on different machines. However, this
approach leaves open a performance question, as all random elements up to pj−1 would
have to be generated in order to determine the value of pj with the recursive function ϕ.
To circumvent this performance issue, we use a special class of PRNGs, which enables us
to directly skip to an arbitrary position in the random sequence (a so-called skip-ahead).
Mathematically speaking, these generators allow us to compute the random element
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pj directly with a function ϕ̂(s, j) via the seed s and the position j. PRNGs with this
property are also used in parallel data generation frameworks [5,74]. In general, any hash
function that produces an approximately uniformly distributed output when supplied
with the row indexes suffices in our case.

5.6 Abstraction of Sampling Techniques as UDF

We embed into the algorithm a user-defined sampling function, refered to as sampling-
UDF, to specify the sampling technique to apply. This function allows adaption to a
wide variety of sampling techniques with only a few lines of code. We assume during
integration of our algorithm into a large-scale ML system that necessary sampling-UDFs
are implemented by experts and available to end users. Our algorithm calls the sampling-
UDF to determine occurrences of a row in the sample matrices. The sampling-UDF has
the following signature:

row id, rng, params→ (samplematrix id, relative pos)∗

The first input parameter is the identifier of a particular row to process: row id. The
second input rng refers to a PRNG instantiated by the algorithm, which provides the
‘skip-ahead’ functionality discussed in Section 5.5. The third input params denotes a set of
user-defined parameters (e.g., the number of samples to draw). The implementation of the
sampling-UDF must output a potentially empty set of (samplematrix id, relative pos)
tuples. Each tuple dictates an occurrence of the row in a sample matrix denoted by
samplematrix id. This allows to generate occurrences in different sample matrices with
a single invocation. The value relative pos is used by the algorithm to determine the
order of the rows in the sample matrices by sorting them according to relative pos. For
instance, we can randomize a sample matrix by setting relative pos to a random number
drawn from rng. When operating with fixed precision numbers, it is possible that the
same random number relative pos is generated for two different rows. To alleviate that
case, the algorithm also sorts by the unique row id to guarantee a deterministic ordering
in the sample matrix.

5.7 Distributed Sample Generation Algorithm

Our algorithm conducts the distributed sample generation in three phases: (i) the
‘local-sampling’ -phase decides which rows of the input matrix M will occur in which
sample matrices, (ii) the ‘block-preparation’ -phase groups and sorts the selected rows, and
(iii) the ‘streaming-re-block’ -phase finally materializes the blocks of the sample matrices.
Figure 5.3 shows an example of the distributed execution of the three phases. It details the
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individual steps in the algorithm for generating two sample matrices, S(1) and S(2). Both
sample matrices contain three mails out of our toy dataset of six emails M . We assume
execution in a distributed data processing system that runs MapReduce-like programs,
such as Hadoop [11], Flink [2], Spark [187], and Hyracks [32], or in a distributed database
that supports UDTFs and UDAFs. Furthermore, we assume that the overall size of the
dataset (i.e., the dimensions of the input matrix) is known. The three phases execute in
a single pass over the data. A traditional MapReduce system runs the ‘local-sampling’
within the map-stage, the ‘block-preparation’ within the shuffle and the ‘streaming-re-
block’ during the reduce-stage. The ‘local-sampling’-phase decides which rows of the
input matrix occur in which sample matrices. Every machine in the cluster processes
locally stored blocks of the input matrix in this phase and uses the sampling-UDF
to sample partitions of rows from the blocks. Algorithm 13 illustrates the individual
steps of this phase. Each machine processes a block of the input matrix at a time and
iterates over the row partitions contained in the block (cf. line 4). For each such row
partition, it invokes the sampling-UDF (cf. line 6) to determine the occurrences of this
row in the sample matrices. For every (samplematrix id, relative pos) tuple returned by
the sampling-UDF, the processing machine emits a record with the following structure:
samplematrix id | vertical block index | relative pos | row id | row partition as shown
in line 7 & 8. The field samplematrix id denotes the sample matrix in which this row
will occur, the field vertical block index is the vertical index of the block of the input
matrix from which we sampled the row partition. The field row id has the row index
(e.g., the i-th row has index i) and the field relative pos holds the relative pos value
from the tuple returned by the sampling-UDF. These two fields will later be used to
determine the position of the row in the sample. The field row partition holds the data
from the row partition that we sampled. The ‘local-sampling’ phase is embarassingly
parallel as every block of the input matrix is processed independently. Its maximum
degree of parallelism is equal to the number of blocks of the input matrix. In Figure 5.3,
we see that the ’local-sampling-phase’ results in six records being emitted by the first
machine that stores and processes the blocks, M1,1, M2,2, M3,1, and another six records
emitted by the second machine that processes the blocks, M3,2, M1,2, M2,1.

Algorithm 13: ‘Local-Sampling’: Sampling from locally stored matrix blocks.

1 Input: matrix block blk, random number generator rng, sampling parameters params
2 Output: records containing the sampled rows

3 v ← read vertical index of blk
4 for row partition in blk
5 j ← index of row
6 for occ← sampling UDF( j, rng, params )
7 emit record( occ.samplematrix id, v, occ.relative pos, j, row partition )
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The purpose of the next phase, called ‘block-preparation’-phase, is to prepare the
materialization of the records emitted from the ‘local-sampling’-phase as blocked ma-
trices. For that, we must group and sort the records. We use the data from the fields,
samplematrix id and vertical block index of the record as a composite key for grouping.
After grouping, every resulting group contains the data for the column of blocks denoted
by vertical block index of the sample matrix denoted by samplematrix id. As different
column blocks will be processed by different machines, we need to ensure that all of the
groups contain their records in the same order. Failing to guarantee this would result in
inconsistent sample matrices. Therefore, we sort the groups on the field relative pos to
ensure collection of partial rows in the same order on all machines. We additionally sort
on the row id to obtain a unique ordering even when relative pos is the same random
number for multiple rows. We omit pseudocode for this phase, since distributed data
processing systems provide sorting and grouping functionality.

Figure 5.3 illustrates the two steps in this phase. First, we form four groups of three
records from the twelve records emitted in the previous phase. Every group contains
the row partitions for a column of blocks of a sample matrix. The topmost group, for
example, contains the data for the first column of blocks of sample matrix, S(1), which

consists of the blocks, S
(1)
1,1 and S

(1)
1,2 . Analogously, the bottommost group contains the

data for the second column of blocks of sample matrix S(2), namely, the blocks, S
(2)
2,1

and S
(2)
2,2 . In a second step, we sort these groups on the relative pos and row id fields

from the record, so that the records in each group have the same order in which the
corresponding rows will later appear in their intended sample matrix.

The final ‘streaming-re-block’-phase materializes the distributed blocked sample matrices.
Every participating machine processes a sorted group from the ‘block-preparation’-
phase and forms the blocks for a column of blocks of the corresponding sample matrix.
Algorithm 14 shows the required steps. We allocate a single block as buffer (c.f., line 3)
which is filled with data from the field row partition of incoming records in order (c.f.,
line 5). Whenever the buffer block is completely filled, we write it back to the DFS and
clear it (cf. lines 7 & 8). We increment the horizontal index of the buffer block afterwards.
Finally, we write back potentially remaining buffered data, to handle the case when the
final buffer block is not filled (c.f., lines 10 & 11).

Re-blocking in this manner achieves a high degree of parallelism by allowing every column
of blocks of every sample matrix to be processed independently. The maximum degree of
parallelism of this phase is the number of sample matrices N to be generated multiplied
by the number of column blocks (which equals the number of columns n of the input
matrix divided by the block size d). We also achieve high memory efficiency, as only
a single buffer block is necessary to materialize a column block of a sample matrix. A
potential drawback of our approach is that the degree of parallelism in this last phase
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Algorithm 14: ‘Streaming-Re-block’: Materialization of sample matrix blocks.

1 Input: sorted record group, sample matrix identifier s, vertical block index v
2 Output: sample matrix blocks written to DFS

3 allocate buffer block blk with indexes 1, v
4 for rec← record group
5 add row partition from rec to blk
6 if blk is full then
7 write blk to DFS location for s
8 clear contents of blk
9 increment horizontal index of blk

10 if blk is not empty then
11 write blk to DFS location for s

depends on the shape of the input matrix, which determines the number of column blocks.
It is therefore best applied in cases where at least one of the following conditions is true:
(a) a large number of samples must be generated, (b) the input matrix has many columns,
which is often the case when working with sparse datasets.

Figure 5.3 illustrates an example for this phase. We transform the four record groups
from the previous phase into blocked matrices. Every group results in a column of blocks

of a sample matrix. We transform the topmost group into the blocks, S
(1)
1,1 and S

(1)
1,2 of

sample matrix S(1) and the next group into the blocks, S
(1)
2,1 and S

(1)
2,2 . The remaining

two groups analogously form the blocks, S
(2)
1,1 , S

(2)
1,2 , S

(2)
2,1 , and S

(2)
2,2 of sample matrix S(2).

We store the blocks in the distributed filesystem.

This section focuses on generating sample matrices by sampling rows of an input matrix,
which is common for most supervised learning use cases where each row corresponds to
a labeled training example. However, other ML use cases require sampling at matrix
cell level. One example is recommendation mining, which typically analyzes a matrix of
interactions between users and items to predict the strength of unseen interactions [106].
Here, cross-validation holds out interactions, which involves sampling matrix cells. Our
algorithm can extend to such cases, by processing blocks of the input matrix cell-wise
instead of row-wise, applying the sampling-UDF at the cell level, and lightly modifying
the re-blocking to aggregate cells.

5.8 Distributed Sampling with Replacement

Sampling with replacement is required by multiple meta learning techniques, including
approaches for both cross-validation and ensemble learning. Bootstrap is a powerful
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statistical method for evaluating the quality of statistical estimators, and is applied to
many cross-validation techniques [104].

Efficiently drawing bootstrap samples in a parallel, distributed way is a hard problem [141].
In the following, we will explain why this is the case and present our solution to the
problem. So far, we viewed the sample generation techniques discussed as distributed
generation of a categorial random variate. Take k-fold cross validation on an input matrix
with m rows as an example: for each row we have to decide to which of the k folds it
must be assigned. This is equivalent to generating a random variate r ∈ {1, . . . , k}m from
a categorial distribution of dimensionality m with possible outcomes {1, . . . , k}, each
having probability 1

k . The j-th component rj of r holds an outcome that describes to
which of the k folds the row with index j is assigned. In our algorithm, every invocation
of the sampling-UDF generates such a component. The generation of a categorial random
variate is easy to conduct in parallel in a distributed system, as all components of such a
random variate are independent of each other, allowing us to generate them in isolation.

In contrast to the sample generation that we have seen so far, bootstrap samples are
drawn using sampling with replacement, which means every row occurs at each position
of every sample matrix with equal chance. A single row can occur zero or many times in
a generated sample matrix. Given an input matrix with m rows and a desired bootstrap
sample size s, we have to generate a random variate from the multinomial distribution
Mm(s; 1

m , . . . ,
1
m) for the creation of a sample matrix with bootstrap sampling. Here,

a component rj of r denotes the number of times that the row with index j occurs in
the sample matrix. Unfortunately, the components of a multinomial random variate are
not independent, but negatively correlated: Say (r1, . . . , rm) ∼Mm(s; 1

m , . . . ,
1
m), then

if we fix the first component r1 to have value z, the variate composed of the remaining
components of r follows a multinomial distribution with different probabilities [155]:
(r2, . . . , rm) ∼Mm−1(s− z; 1

m−1 , . . . ,
1

m−1). Because of this correlation, we cannot easily
generate the components of r in parallel in isolation (existing approaches usually generate
multinomial random variates sequentially or with random access to the variate as a
whole [48]). Another constraint in our case is that we do not know the exact number
of rows that a particular machine of the cluster is going to process, as distributed data
processing systems typically schedule processing tasks adaptively.

A simple solution to integrate sampling with replacement in our algorithm is to generate
the whole random variate for every desired sample matrix once on every machine (our
algorithm already exposes a random number generator with a fixed seed on every
machine), and then to access the components corresponding to the rows to process. This
approach however has the constraint that there must be enough memory available for
all these variates. To circumvent this constraint, we present a method that enables
us to compute a single compontent of a multinomial random variate in isolation with
constant memory requirements. We use the property that a multinomial is partitionable
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Algorithm 15: Recursive generation of a component of a multinomial random
variate.
1 function sample multinomial( j, start, end, t, rng )
2 if start = end or t = 0 then
3 return t
4 size← end− start+ 1
5 sizeleft ← bsize/2c
6 mid← start+ sizeleft − 1
7 skip ahead to position mid in rng
8 tleft ← binomial rand( rng, t, sizeleft/size )
9 if j ≤ mid then

10 return sample multinomial( j, start, mid, tleft )
11 else
12 return sample multinomial( j, mid+ 1, end, t− tleft )

by conditioning on the totals of subsets of its components. Let r = (r1, . . . , rm) be a
random variate from the multinomial distribution Mm(s; p1, . . . , pn) and let z =

∑i
j=1 rj

be the sum of the first i components of r. By fixing z we also fix the sum of the
remaining components

∑n
j=i+1 rj as s − z. The left partition (r1, . . . , ri) then follows

the multinomial distribution Mi(z;
p1
pl
, . . . , pipl ) with pl =

∑i
j=1 pj . Analogously, the

right partition follows the multinomial distribution Mm−i(s− z; pi+1

pr
, . . . , pnpr ) with pr =∑n

j=i+1 pj . The generation of the cumulative sum z necessary for the partitioning can be

conducted by sampling a binomial distribution: z =
∑i

j=1 rj ∼ B(s,
∑i

j=1 pj).

We use this property to define a recursive algorithm that generates the components of
a multinomial random variate in parallel in a distributed setting (c.f., Algorithm 15).
In order to determine the component rn of a multinomial random variate r of size t
with equally probable outcomes (p1, . . . , pm), we proceed as follows. First, we determine
the middle index of the current partition of the random variate that we look at (c.f.,
lines 4 to 6). Analogously to previous implementations, we skip the random number
generator to this index to get repeatable results when processing this partition on different
machines (c.f., line 7). Next, we sample from a binomial distribution to determine how
many occurrences to assign to the left and right side of the current partition (c.f., line 8).
Finally, we recursively invoke the function for the left or right side of the current partition,
depending on the index j of the component we aim to compute. The algorithm terminates
when we reach a single element partition (the component we look for) or when the current
partition is assigned zero occurrences (c.f. lines 2 & 3). This approach enables us to
compute a multinomial random variate in a distributed, parallel fashion with constant
memory requirements and without any intermachine communication. While it fits our
requirements from the perspective of minimal memory consumption, it has the drawback
of requiring a logarithmic number of samples from binomials per component. Sequential
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techniques, on the contrary, only require a single binomial sample per component [48].
We can improve the runtime however with additional memory by caching the sampling
results from early invocations for large partitions that have to be computed for many
components. Nevertheless, the presented algorithm is mostly academic in its nature.

However, the special case of block-partitioning of the input data gives rise to a much more
practical implementation, which we will also use for our experiments. Every machine
processes the data one block at a time, where a block contains a large number of rows
(e.g., 1000 by default in SystemML [76]). We leverage this for an approach that uses a
single partitioning step only: We first create a random variate r̂ from the multinomial
distribution Mb(s; pb), where b equals the number of blocks to consider (the number
of rows divided by the blocksize) and the probability vector pb assigns probabilities
proportional to the number of rows per block2. A component r̂h holds the totals of the
components of r corresponding to the rows included in the block with horizontal index h.
We use a fast sequential algorithm to generate r̂ on every machine in the cluster [48].
When we encounter the first row of a block, we generate a temporary random variate
of dimensionality l and cardinality r̂h, where l is the number of rows contained in the
current block and h is the horizontal index of that block. This random variate contains
the number of occurrences for every row of the current block and only is kept in memory
until the current block is processed.

input matrix B

B1,1 B1,2

B2,2B2,1

B3,1 B3,2

r̂1

r̂2

r̂3

B1,3 B1,4

B2,4B2,3

B3,3 B3,4

Figure 5.4: Correspondence of the components of a generated random variate to the
horizontal columns of blocks in a blocked matrix.

Figure 5.4 illustrates this practical approach for a generating a sample of size s from
a 5 × 8 example matrix B in a block size of 2 × 2. In the first step, a 3-dimensional
random variate r̂ ∼ M3(s; (25 ,

2
5 ,

1
5)) is generated on every machine in the cluster. We

use the same seed to guarantee that every machine generates the same random variate.
We see that the probability for rows from the bottom blocks is lower (15) than in the
remaining blocks (25), as the bottom block contains less rows than the remaining blocks.
The components r̂1, r̂2 and r̂3 correspond to the number of occurrences of rows in the

2Non-fully filled bottom blocks have a lower probability of being selected.
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first, second and third horizontal column of blocks in B (c.f., Figure 5.4). A machine that
processes a block later in the ‘local-sampling’-phase uses r̂ to generate a second random
variate which corresponds to the number of occurrences of the rows contained in that
block. E.g., when a machine processes block B2,3, which contains the rows 3 and 4, it uses
r̂2 to generate a random variate which denotes the number of occurrences of these rows
in the sample as follows: (r3, r4) ∼M2(r̂2 ; (12 ,

1
2)). This approach is memory-efficient as

only the small random variate r̂ must be kept in memory, whose dimensionality is equal
to the number of rows divided by the block size. At the same time, sampling from a
block is very efficient, as we only need to generate an additional small random variate of
dimensionality equal to the block size.

5.9 Sampling UDFs for a Variety of Meta Learning Techniques

In this section we show how to implement the sample generation for common meta
learning techniques based on the previously described sample generation algorithm with
the sampling-UDF. Users aiming to implement generation techniques beyond the ones
described here can leverage the presented UDFs as a template.

5.9.1 Hold-Out Tests

Section 5.3 described a cross-validation technique known as the hold-out test. The
idea behind hold-out tests is to randomly generate two sample matrices according to a
user-defined train/test ratio using sampling without replacement. We use the data from
the first sample matrix (the training set) to train a model and evaluate its prediction
quality using the second sample matrix (the test set).

Algorithm 16: Sampling-UDF for a single hold-out test.

1 Input: row index j, random number generator rng, params: user-defined train/test ratio
2 Output: tuple denoting occurrence in training set or test set

3 skip ahead to position j in rng
4 r ← random number generated by rng
5 if r ≤ user-defined train/test ratio then
6 return occurrence in training set at position r
7 else
8 return occurrence in test set at position r

Figure 5.5 illustrates the sample generation for a hold-out test using our example dataset
of six emails and a train/test ratio of two thirds. We randomly choose four emails to form
the training set, and the remaining two comprise the test set. Algorithm 16 shows an

110



5.9 Sampling UDFs for a Variety of Meta Learning Techniques

implementation of the sampling-UDF that generates the sample matrices for a hold-out
test. As described in Section 5.7, the algorithm invokes the sampling-UDF for every row
partition of a processed block, and the result describes in which sample matrices the
row occurs. In the case of a hold-out test, every row either occurs in the training set or
in the test set. In order to make this decision for a row with index j, we first skip the
random number generator rng to the position j in its random sequence (c.f., line 3) to
ensure reproducible results. Next, we generate a random number between zero and one
from the rng and compare it to a user-defined train/test ratio to decide whether the row
occurs in the training set or the test set (c.f., lines 4 to 8).

mail 1
mail 2

mail 3
mail 4

mail 5
mail 6

mail 3
mail 6

mail 2
mail 4

mail 1
mail 5

training set

test set

input matrix M

Figure 5.5: Sample generation for a hold-out test: Creating a training set from two thirds
of the input rows and a test set from the remaining rows.

In order to improve the estimate of the prediction quality, we might want to conduct more
than a single hold-out test. It is easy to adapt the implementation to generate several
pairs (say w) of training sets and test sets for a series of hold-out tests. Algorithm 17
shows the necessary code. We simply repeat the approach of generating a random number
and using this number to determine the occurrence of a row in the training set or test set
w times (c.f., lines 5 to 10). There is one difficulty here: we need w random numbers for
each invocation and we have to ensure that every position in the random sequence is only
used for a single row to ensure that the results are uncorrelated. Therefore, for each row
index j ∈ {1, . . . ,m} (where m is the number of rows of the input matrix), we skip the
rng to the position (j − 1) ∗w in its random sequence and use the subsequent w random
numbers for the current invocation to determine the occurrences of row j (c.f., line 4). A
further feature could be to only use a subset of the data for the training set and test set.
This functionality is easily added by only executing lines 7-10 if the random number r
is less than the ratio corresponding to the subset of data to be generated and ignoring
non-matching rows.
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Algorithm 17: Sampling-UDF for a series of hold-out tests.

1 Input: row index j, random number generator rng, params: number of hold-out tests w,
user-defined train/test ratios

2 Output: tuples occs: occurrences in training set or test set

3 occs← ∅
4 skip ahead to position (j − 1) ∗ w in rng
5 repeat w times
6 r ← random number generated by rng
7 if r ≤ user-defined w-th train/test ratio then
8 add occurrence in w-th training set at position r to occs
9 else

10 add occurrence in w-th test set at position r to occs
11 return occs

5.9.2 K-fold Cross-Validation

The most popular cross-validation approach is k-fold cross-validation [24,72]. Here, we
randomly divide the data into k disjoint logical subsets (called folds) using sampling
without replacement, and execute k experiments afterwards. In every experiment, we
train a parameterized model with all but the k-th fold as training data and test its
prediction quality on the held-out data from the k-th fold. In the end, the overall estimate
of the prediction quality of the model is computed from the outcomes of the individual
experiments.

Figure 5.6 illustrates 3-fold cross-validation on our mail classification example. On a
logical level, we assign the six emails randomly to the three folds: mail 2 and 4 form
the first fold, mail 3 and 6 the second, and finally the third fold is comprised of mails 1
and 5. We have to create the training sets and tests from the logical folds for the three
rounds of experiments. In the first round, the test set consists of the mails from the first
fold and the training set is comprised of the rest of the data. In the second round, the
second fold becomes the test set and the remaining data is used for training. In the third
and final round, we train on folds one and two, and test on the third fold. Algorithm 18
shows a straightforward implementation of the sampling-UDF, which directly creates
the k training sets and tests for the k rounds of k-fold cross-validation. Analogous to
previous cases, we skip the random number generator rng to the position in the random
sequence denoted by the row index j (c.f., line 3). Next, we generate a random number
between zero and one and compute the target fold f for the row from that (c.f., lines 5 &
6). Then, we make the function emit k occurrences of the row: it occurs in the test set of
the f -th round and in the k − 1 training sets of all other rounds (c.f., lines 7 to 11).
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Algorithm 18: Näıve sampling-UDF for k-fold cross-validation.

1 Input: row index j, random number generator rng, params: number of folds k
2 Output: tuples occs: occurrences in training set or test set

3 occs← ∅
4 skip ahead to position j in rng
5 r ← random number generated by rng
6 f ← compute fold to assign to as dr ∗ ke
7 for w ← 1 . . . k
8 if w = f then
9 add occurrence in w-th test set at position r to occs

10 else
11 add occurrence in w-th training set at position r to occs
12 return occs

This näıve approach is highly problematic as it creates k copies of the input data, which
poses a serious performance and scalability bottleneck. Ideally, we would only want
to create the folds once (resulting in only a single copy of the input data) and read
k − 1 of them as training set in every round. Unfortunately, treating a set of generated
sample matrices as if they were a single big matrix does not work out-of-the-box. The
block-partitioned representation causes difficulties when the dimensions of the sample
matrix for a fold are not an exact multiple of the chosen block size. In such cases, there
will be partially filled blocks at the bottom of the sample matrices, which prevent us
from treating a collection of sample matrices as a single big matrix. Figure 5.7 shows an
example for such a case. We divide a matrix with ten rows into three folds, using a block
size of 2× 2. The resulting sample matrix for the first fold consists of four rows (with
indices 1,2,3,4), while the sample matrices for the second and third fold only consist of
three rows (with indices 5,6,7 and 8,9,10). This inevitably leads to non-fully filled blocks

mail 1
mail 2

mail 3
mail 4

mail 5
mail 6

mail 2
mail 4

mail 6
mail 3

mail 1
mail 5

input matrix M

fold 1

fold 2

fold 3

fold 1

fold 2
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round 1 round 2 round 3

= test set
= training set

Figure 5.6: Sample generation for 3-fold cross-validation
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Figure 5.7: Difficulties of treating a set of sample matrices as a single large matrix during
a round of k-fold cross validation when matrix dimensions and block size do
not align.

at the bottom of the sample matrices for the second and third fold, as we are representing
three rows with a block size of 2 × 2. In the first round of 3-fold cross-validation we
need to treat the second and third fold as a single large matrix to be used as training
set. Unfortunately, the rows of the matrix are not correctly aligned, as we represent six
rows with four blocks of size 2× 2. In a single big matrix, the rows with indices 7 and
8 should share a block, but are spread over two different blocks in our case, analogous
to the rows with indices 9 and 10. Having operators of an ML system consume such an
incorrectly blocked matrix would lead to inconsistent results. In order to circumvent the
above issue in our algorithm, we introduce a special mode called ‘dynamic sample matrix
composition’ for k-fold cross-validation. With this mode activated, the algorithm copies
the non-fully filled bottom blocks of each generated sample matrix to a specific location
in the distributed filesystem and runs an additional job that creates an additional matrix
per training set from those blocks. This changes the order in the generated training
set, but still provides a uniformly random order as result because we simply switch
positions in an already randomized sample without looking at the content of the rows.
Finally the algorithm only reads the full blocks of the sample matrices (neglecting the
non-fully filled blocks) plus the additionally created matrix as one large composed matrix.
‘Dynamic sample matrix composition’ requires only a single copy of the input matrix plus
k additional small matrices consisting of at most k − 1 blocks. With ‘dynamic sample
matrix composition’ activated, we implement k-fold cross-validation with a very simple
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Figure 5.8: Generating bootstrap sample matrices from an input matrix. Note that
individual rows can occur more than once in the sample matrices.

UDF that only triggers a single occurrence of each row, as shown in Algorithm 19. After
computing the fold f for the row with index n analogous to Algorithm 18, we simply
emit a single occurrence in the sample matrix of fold f (c.f., line 6). We refer to this
as fold-based approach. We note that ’dynamic sample composition’ violates our initial
goal of restricting the algorithm to a single pass over the data. However, the second
pass only reads a small fraction of the generated data (the non-fully filled blocks on the
bottom of the sample matrices). Our experiments in Section 5.9.2 clearly indicate that
this additional work pays off in terms of runtime and output size of the generated data.

Algorithm 19: Fold-based sampling-UDF for k-fold cross-validation.

1 Input: row index j, random number generator rng, params: number of folds k
2 Output: tuple denoting occurrence in fold

3 skip ahead to position j in rng
4 r ← random number generated by rng
5 f ← compute fold to assign to as dr ∗ ke
6 return occurrence in f -th fold at position r

5.9.3 Bagging

A popular ensemble method leveraging sampling with replacement is bagging [34], which
trains a set of models on bootstrap samples of the input data and combines their
predictions afterwards. In our example, we would draw bootstrap samples of mails from
our mail corpus (c.f., Figure 5.8), and train a classification model on each sample matrix
in isolation. In order to decide whether to consider a newly arriving mail as spam, we
would combine the predictions of the individual classifiers, i.e., by majority vote [24].
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The sampling-UDF for generating bootstrap samples (c.f., Algorithm 20) directly invokes
the recursive function sample multinomial from Section 5.8 to determine the number
of occurrences of a row with index j in the bootstrap sample (c.f., line 4). We skip the
PRNG to the position j ∗ s (c.f., line 5), where j ∈ {1, . . . ,m} is a row index and s is
the desired sample size. This leaves the first s positions in the random sequence for
the computation of the number of occurrences (via sample multinomial) and another s
positions for generating random numbers for the relative pos values of the occurrences
of row j.

Algorithm 20: Sampling-UDF for bootstrap sampling.

1 Input: row index j, random number generator rng, params: number of rows m, sample
matrix size s

2 Output: tuples occs: occurrences in bootstrap sample

3 occs← ∅
4 t← sample multinomial( j, 0, m, s, rng )
5 skip ahead to position j ∗ s in rng
6 for 1 . . . t
7 r ← random number generated by rng
8 add occurrence at position r to occs
9 return occs

5.10 Experiments

We conduct experiments with Apache Hadoop 1.0.4, Apache Spark 1.0 and Apache Hive 0.12 [169].
In every experiment, we spend effort to tune system parameters to improve performance.
We run the evaluation on a 192-core cluster consisting of 24 machines. Each machine has
two 4-core Opteron CPUs, 32 GB memory and four 1 TB disk drives. The datasets in use
are synthetic. We generate random matrices with uniformly distributed non-zero cells for
a specified dimensionality and sparsity. Analogous to [76], we employ a fixed block size
of 1000× 1000 and optimize the physical block representation for dense and sparse data.
Dense matrices have smaller dimensions and a large data size, while sparse matrices have
higher dimensionality and comparatively low data size. We run experiments with both
to show that our algorithm efficiently handles each of these types of matrices.

5.10.1 Scalability

The goal of the first set of experiments is to evaluate the scalability of our algorithm
with regard to the size of the input data, the number of machines in the cluster and the
number of samples drawn.
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Scalability with increasing data size: First, we look at the effects when generating
samples from increasing input sizes on a fixed number of machines (the whole 192-core
cluster). We start with a dense 100, 000× 10, 000 matrix with 1 billion entries. We repeat
this experiment on larger matrices by increasing the number of rows of the input, so
that we obtain matrices with 2.5 billion, 5 billion, 7.5 billion and finally 10 billion entries.
We test two sampling techniques on every input matrix. First, we generate 10 training
set/test set pairs for hold-out-testing (c.f., Section 5.9.1). Second, we draw 20 bootstrap
samples of the data (c.f., Section 5.9.3). In order to make the results comparable, we
configure the sample sizes so that the aggregate size of the sample matrices is equal to the
size of the input matrix. The disk-based Hadoop implementation reads the input matrix
from the DFS and writes back the sample matrices to the DFS. For our memory-based
Spark implementation, we test the sample generation from in-memory matrices: here the
input matrices are already cached in-memory and we only materialize the resulting sample
matrices in-memory. Figure 5.9(a) shows the results of this series of experiments. We
observe a linear speedup for both implementations and sampling techniques. Bootstrap
sampling incurs a higher overhead to the runtime, due to the higher complexity of
sampling from a multinomial (c.f., Section 5.9.3). As expected, the Spark implementation
is up to ten times faster than Hadoop, because it reads from and writes to memory and
applies hash-based grouping. We repeat this set of experiments for matrices with 90%
sparsity. We start with a 500, 000× 20, 000 input matrix comprised of 10 billion entries
(and 1 billion non-zeros). Again, we increase the number of rows to obtain matrices of size
25 billion, 50 billion, 75 billion and 100 billion, and execute both sampling techniques on
those. Analogous to the previous experiment, the Hadoop implementation shows a linear
speedup for both, bootstrap and hold-out sampling (c.f., Figure 5.9 (b)). Unfortunately,
Spark was not able to efficiently handle the large matrices used in this set of experiments
(we terminated the execution when Spark’s shuffle did not complete after 15 minutes).

Scalability with increasing data and cluster size: Next, we investigate the effects
of increasing the number of machines proportionally to a growing amount of input
data. Again we generate 20 bootstrap and hold-out samples. We start with a dense
250, 000 × 10, 000 matrix (having 2.5 billion non-zeros) as input on a cluster of six
machines. In the following experiments, we double the number of machines as well
as the number of rows of the input matrix, up to 24 machines and 10 billion non-
zeros. We measure the sample generation from memory-resident input with our Spark
implementation. Figure 5.10 depicts the resulting execution times. Ideally, we would see
a constant runtime. However, it is not possible to reach this ideal scale-out for many
reasons (e.g., network overheads). The same effect has been observed in other large-scale
ML systems [76]. Nonetheless, our algorithm achieves a steady increase in execution time
with growing data and cluster size.

Scalability with increasing number of sample matrices: Finally, we focus on the
effects of increasing the number of sample matrices to generate. We make our Hadoop
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Figure 5.9: Linear speedup for the generation of 20 sample matrices when increasing the
input data size on a fixed cluster size.
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Figure 5.10: Effect of increasing the cluster and input data size.

implementation generate samples from a 500, 000×10, 000 matrix with 5 billion non-zeros.
First, we generate up to 250 small sample matrices, where every sample matrix contains
one percent of the rows of the input matrix (c.f., Figure5.11(a)). Next, we increase
the size of the sample matrices to five percent of the input data and generate up to 50
sample matrices per run (c.f., Figure5.11(b)). We test both cases with bootstrap and
hold-out sampling. Our results show that the runtime increases linearly with the number
of samples to generate and that our algorithm is able to generate a large number of
samples efficiently with a single pass over the data. Again, the runtime is higher for
bootstrap sampling due to the higher complexity of the underlying sampling process.
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Figure 5.11: Linear speedup when increasing the number of sample matrices for different
sampling techniques.

5.10.2 Dynamic Sample Matrix Composition

Next, we evaluate the benefits of our ‘dynamic sample matrix composition’ technique
for k-fold cross-validation (c.f., Section 5.9.2). We make our Hadoop implementation
generate the training sets and test sets for 5-, 10- and 20-fold cross-validation on a dense
100, 000× 10, 000 matrix with 1 billion entries as well as on a sparse 500, 000× 20, 000
matrix with 1 billion non-zeros. For every case, we first generate the training sets and test
sets directly with the näıve approach. We compare this to the generation of the training
sets and test sets via k-folds with ‘dynamic sample matrix composition’ activated in our
algorithm. Figures 5.12(a) and 5.12(b) depict the results of this experiment for the dense
and sparse matrices. The plots on the left show the execution times of both approaches.
We see that the time of the näıve method grows linearly with increasing k, while the
execution time of the fold-based approach stays constant. This is expected because the
näıve approach has to create k copies of the data, while the fold-based method only
has to create the folds (summing to a single copy of the input data) plus some extra
blocks to allow for the dynamic composition of sample matrices. In the case of 5-fold
cross-validation on the sparse matrix, the näıve approach is faster as it only runs a single
pass over the input data, while the fold-based approach has to additionally process the
partially filled blocks of the sample matrices after generation, for creating the extra
blocks for dynamic composition. For k > 5, the fold-based approach outperforms the
näıve approach in all cases by a factor between 1.6 and 3.3. The plots on the right side of
Figure 5.12 show the ratio of output size (the sample matrices forming the training sets
and test sets) to input size. As expected, the näıve approach produces an output that is
k-times as large as the input size. On the contrary, the fold-based approach produces a
much smaller output: it creates k folds, which, in combination, have the same size as the
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Figure 5.12: Runtime and output sizes when generating training sets and test sets for k-
fold cross-validation with and without ‘dynamic sample matrix composition’.

input. Additionally, the fold-based approach has to create extra blocks per training set
from the non-fully filled blocks of the folds (c.f., Section 5.9.2). In the case of the dense
matrix, the additional output size for the extra blocks amounts to a factor between 0.1
and 2.2 of the input size (which is still small compared to the sizes produced by the näıve
approach). In the case of sparse matrices, the additional output size for the extra blocks
is tiny (as we represent only the non-zeros of blocks) and ranges from a factor of 0.003 to
0.008. In summary, the fold-based approach provides a runtime constant in k (instead of
linear in k for the näıve approach) and produces output sizes that are up to an order of
magnitude smaller.
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5.10.3 Comparison to Existing Techniques

In the following, we compare our proposed algorithm to two existing approaches for
distributed sample generation.

Comparison against Matrix-based Sample Generation: This experiment demon-
strates that our proposed algorithm provides a huge performance benefit over implement-
ing sampling with matrix operations. Many large-scale ML systems (e.g., [13, 76, 89, 99])
offer operators to conduct linear algebraic operations on large matrices, including ones
required for sample generation, which is performed using linear algebra as follows. Assume
we want to generate sample matrices with a total of p rows from an m× n input matrix
M . For that, we have to create a binary, sparse ‘selection’ matrix S of size p×m. This
selection matrix contains only a single non-zero entry per row and is multiplied to the left
with the input data matrix: SM = A. The resulting matrix A contains all p rows selected
for the sample matrices. Setting the value (i, j) in the selection matrix S makes the j-th
row of the input matrix M appear at the i-th position of A. We obtain individual sample
matrices by slicing A. We compare our algorithm to sample generation with existing
distributed matrix operations. The latest version of Apache Mahout [13] provides a
Scala-based domain specific language (DSL) for distributed linear algebraic operations on
row-partitioned matrices. Programs written in this DSL are automatically parallelized
and executed on Apache Spark. We implement matrix-based sample generation as follows
in Mahout’s DSL. First, we load the input matrix M from the DFS into memory on our
cluster. Next, we programatically create the sparse selection matrix S in-memory. We
multiply the distributed data matrix M on the left by the sparse selection matrix S to
obtain A. Since A is a concatenation of all requested sample matrices, we finally read
the individual sample matrices in parallel as slices of A.

// load distributed input data matrix

val M = loadMatrixFromHDFS(...)

// programmatically create in-memory selection matrix

val S = createSelectionMatrix(input, numSamples, ...)

// distributed multiplication of selection matrix S and input matrix M

val A = S %*% M

// read individual sample matrices as slices of A in parallel

(0 until numSamples).par.foreach { ... }

We compare the performance of the matrix-based sample generation with Mahout’s DSL
on Apache Spark against a Spark implementation of our algorithm. Since Mahout is
optimized for handling sparse data, we use matrices with 90% sparsity in this evaluation.
We generate 20 hold-out samples from several large matrices with up to 500, 000, 000
non-zeros and measure the execution time. Both approaches read the input matrix from
the DFS and materialize the individual sample matrices in-memory. The results shown
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Figure 5.13: Comparisons against existing techniques.

in Figure 5.13a show our algorithm handles the sample generation in very short time
(only 87 seconds for the largest matrix) with its runtime only moderately affected by
the input size. On the contrary, the matrix operations in Mahout need 5 to 20 times
longer for the sample generation. Furthermore, the matrix-based approach does not scale
well, as a linear increase of the data size leads to super-linear increases in the runtime.
These results indicate that distributed matrix operations do not fit the sample generation
problem well and large-scale ML systems benefit from a dedicated sample generation
machinery.

Comparison against Join-based Sample Generation: Our final experiment com-
pares a SQL-based bootstrap sampling technique [45] to our approach. This technique
assumes the input matrix is stored in a relational table and executes in two steps. First,
a temporary table describing assignments of rows to sample matrices is created. Second,
this temporary assignments table is joined with the input matrix table to form the
sample matrices. This approach has several drawbacks for our ML use case. First, the
non-blocked matrix representation, where every cell is individually represented, has huge
performance penalties for many operations [76]. Secondly, while many ML toolkits and
systems offer primitives for linear algebraic and statistical operations, many lack join
primitives [13,76,89,99]. Nevertheless, we perform this experiment to illustrate the bene-
fits of our approach which eliminates both the need for the temporary assignment table
and the join. We adapt the join-based approach to use a blocked matrix representation
for dense matrices using double arrays. We restrict our experiments to the dense case, as
it is unclear to us how an elegant representation of blocked sparse matrices would look
like in a SQL-based system. We implement the join-based approach in the distributed
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query processor Apache Hive using HiveQL3. The input is held in the table input with the
schema (h index INT, v index INT, block ARRAY<ARRAY<DOUBLE>>), where h index and v index

refer to the horizontal and vertical index of a block and block represents its contents as a
two-dimensional array. Again, we employ a block size of 1000× 1000. The temporary
table is called assignments with the schema (sm id INT, row id INT, sm pos INT) where sm id

denotes the sample matrix, row id the row to select and sm pos the position for the row in
the sample matrix to create. We implement the user-defined aggregation function reblock,
which forms blocks from a collection of rows (c.f., ‘streaming re-block’ in Section 5.7).
Unfortunately, we do not find an elegant way to create and fill the assignment table during
query time in Hive, so we decide to create and fill it upfront and omit the time required
for that in the evaluation. After creation of that table, we execute the sample generation
in a single query: we extract row partitions from the blocks of the input matrix, join
these row partitions with the assignments table, group the result and materialize the
blocks with reblock:

-- Creation and filling of assigments table omitted

SELECT a.sm_id, floor(a.sm_pos / 1000), r.v_index, reblock(r.row, a.sm_pos) FROM (

SELECT h_index * 1000 + offset AS row_id, v_index, row AS r FROM input

LATERAL VIEW explode(block) AS offset, row)

JOIN assignments a ON r.row_id = a.row_id

GROUP BY a.sm_id, r.v_index, floor(a.sm_pos / 1000);

Next, we implement our algorithm in HiveQL, with the sampling-UDF implemented as
a UDTF. Analogous to the join-based approach, the sample generation requires only a
single query: we extract row partitions from the blocks, apply the sampling function,
group the result and form blocks with reblock.

SELECT sm_id, sm_h_index, v_index, sm_block FROM (

SELECT sm_id, v_index, collect(row, rel_pos) AS col

FROM (

SELECT sm_id, v_index, rel_pos, row FROM input

LATERAL VIEW explode(block) AS offset, row

LATERAL VIEW sampling_UDF(h_index * 1000 + offset, params) AS sm_id, rel_pos)

GROUP BY sm_id, v_index)

LATERAL VIEW reblock(col) AS sm_h_index, sm_block

Figure 5.13b shows the execution times for generating 20, 30, 40, and 50 bootstrap
sample matrices with 10, 000 rows each from a dense 500, 000× 10, 000 matrix. We omit
the time for creating and filling the assignments table in the join-based approach, as
we had to conduct this manually before running the experiment. Both approaches only
require a single MapReduce job. Hive selects a broadcast hash-join for executing the

3LATERAL VIEW is HiveQL’s statement for applying table-generating functions. We omit aliases for
lateral view statements to improve readability.
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join-based approach. The results illustrate that our proposed approach outperforms
the join-based approach in all experiments, although the latter one has competitive
performance. However, our approach has the additional benefit of eliminating both
materialization of a temporary assignments table and the required join of this table
with the input data. From a relational data processing perspective, the ’local-sampling’-
phase of our algorithm can be imagined as distributed hash-join: The row partitions in
the matrix blocks form the probe side and we generate the sample assignments in the
build-side on the fly using the sampling-UDF.

5.11 Related Work

Non-distributed languages and libraries for machine learning offer extensive meta learning
functionality. R [166] has support for cross-validation in the ‘Design’, ‘DAAG’ and ‘Boot’
packages, scikit-learn [142] offers the ‘sklearn.cross validation’ package and furthermore
includes models with built-in cross-validation. MATLAB provides a ‘model building and
assessment’ module in its statistics toolbox.

In recent years, many systems and libraries have been proposed for scalable, distibuted ML;
however, these lack support for a comprehensive meta learning layer. A comprehensive
vision for meta learning on large ML datasets is presented as part of MLBase [108,126];
however, the proposed optimizer has not been implemented yet. SystemML [76] executes
programs written in an R-like language called DML in parallel on MapReduce. SystemML
requires manual expression of sample generation and model evaluation in terms of matrix
operations in DML [26]. Cumulon [89] executes matrix-based data analysis programs
in the cloud, but presents no meta learning functionality. Apache Mahout [13] offers
implementations of ML algorithms in MapReduce and recently switched to building
upon an R-like DSL that executes in parallel on Apache Spark. Mahout provides
limited meta learning functionality for individual algorithms (e.g., hold-out testing for
recommendation models), but lacks a principled meta learning layer. GraphLab [117]
trains ML models using an asynchronous, graph-parallel abstraction, and presents a
Python API supporting evaluation for recommenders and regression models. However,
we are unaware of any description for mapping meta learning onto GraphLab’s vertex
centric data model. Apache Spark [187], which forms the runtime for MLBase, provides
rudimentary sample generation functionality. Similar to our proposed sampling-UDF, a
customizable random sampler is applied to large datasets. At the time of this writing,
this sampling functionality cannot handle block-partitioned matrices with partitioned
training instances and does not offer the generation of a large number of samples in
a single pass over the data. [81] proposes extending the MapReduce execution model
to efficiently implement predicate-based sampling so that required cluster resources for
sample computation are a function of sample size instead of input data.
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Cohen et al. [45] present a SQL-based approach for distributed generation of bootstrap
samples. In contrast to our work, this approach is not designed for block-partitioned data
and requires the generation of a temporary assignment table as well as join primitives
(c.f., Section 5.10.3). Spark produces bootstrap samples from distributed datasets via a
so-called ‘takeSample’ action. This action uses Poisson sampling, which will not guarantee
a fixed sample size and therefore requires to draw a much larger sample than requested.
Furthermore, the sampling must potentially be repeated if the Poisson sample is too
small and the sampled data must fit into the memory of the driver machine. Kleiner
et al. present an alternative to the classical bootstrap called ‘bag of little bootstraps’
which combines the results of bootstrapping multiple small subsets of a larger original
dataset [104].

5.12 Conclusion

In this chapter, we propose a general, single-pass algorithm for generating sample matrices
from large, block-partitioned matrices stored in a distributed filesystem. Embedded in
the algorithm is a user-defined sampling function which allows adaption to a variety
of meta learning techniques with minimal code modification. We discuss implementing
common meta learning techniques using the sampling UDF, particularly distributed
sampling with replacement and generation of training sets for k-fold cross-validation. We
implemented our algorithm in three different systems: Apache Hadoop, Apache Spark,
and Apache Hive. Through extensive empirical evaluation, we found our algorithm scales
linearly for both input data size and number of samples. Our algorithm outperforms
matrix-based sample generation techniques by more than an order of magnitude and is
faster than an approach using a distributed hash-join.
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6 Conclusion

We revisit the thesis statement in Section 6.1 and the research conducted in its context.
Afterwards, we briefly discuss results and future research directions in Section 6.2 and look
at both the negative and positive real-world impact of scalable data mining technology
in Sections 6.3 and 6.4.

6.1 Retrospective

This thesis lays ground work for enabling scalable data mining in massively parallel
dataflow systems on the large datasets collected nowadays. The discussion of Principal
Component Analysis in Chapter 1 exemplarily illustrated common fallacies with respect to
scalable data mining. It is in no way sufficient to naively implement textbook algorithms on
parallel systems; bottlenecks on all layers of the stack prevent the scalability of such naive
implementations. For example, the runtime of mathematical operations in the algorithm
might be superlinearly dependent on the input cardinality, the parallel processing system
might not be able to efficiently execute a certain computational workload such as iterations
or tasks specific to data mining like hyperparameter search might not be well supported.
Acknowledging these fallacies lead us to the thesis statement:

Scalability in data mining is a multi-leveled problem and must therefore be tackled on the
interplay of algorithms, systems, and applications. None of these layers is sufficient to
provide scalability on its own. Therefore, this thesis presents work on scaling a selection
of problems in these layers. For every selected problem, we show how to execute the
resulting computation automatically in a parallel and scalable manner. Subsequently,
we isolate user-facing functionality into a simple user-defined function, to enable usage
without a background in systems programming.

Achieving scalability in data mining is a huge research area and a thesis can obviously
only address a selection of problems from that area. In accordance to the thesis statement,
we chose a multi-leveled approach, and presented research on the level of algorithms,
systems and applications. We started by investigating algorithm-specific scalability
aspects in Chapter 3. We put our focus on the family of collaborative filtering algorithms
for computing recommendations, a popular data mining use case with many industry
deployments. We showed how to efficiently execute the two most common approaches
to collaborative filtering, namely neighborhood methods and latent factor models on
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MapReduce. We evaluated our implementations on datasets with billions of datapoints
and highlighted deficiencies of the MapReduce model. Furthermore, we investigated a
specialized architecture for scaling collaborative filtering to extremely large datasets that
occur in the use cases of world-leading internet companies with hundreds of millions of
users. Lastly, we presented research in the area of distributed graph processing, with the
focus on network centrality. We highlighted scalability bottlenecks in dataflow systems
for this specific scenario and discussed short-comings of the vertex-centric programming
model, on which current specialized graph processing systems build upon. We turned to
system-specific scalability aspects in Chapter 4. We concentrated on a special class of
algorithms, namely fixpoint algorithms, which are common in machine learning and graph
processing tasks. We improved system performance during the execution of these iterative
algorithms by drastically reducing the system overhead required for guaranteeing fault
tolerance. We proposed a novel optimistic approach to fault-tolerance which exploits the
robust convergence properties of a large class of fixpoint algorithms and does not incur
measurable overhead in failure-free cases. Finally, we conducted work on an example
of application-specific scalability aspects of data mining in Chapter 5. This area is often
overlooked in database research, which mostly focuses on efficient model training. A
common problem when deploying machine learning applications in real-world scenarios
is that the prediction quality of the ML models heavily depends on hyperparameters
that have to be chosen in advance. Finding these hyperparameters very often involves
searching through a huge number of possible combinations, which is a resource-intensive
and tedious task that greatly benefits from parallelism. We picked out one aspect of
this problem, namely the efficient generation of samples from large, block-partitioned
matrices. We developed an algorithmic framework for efficiently generating samples from
these matrices in parallel and described how to implement sampling with replacement as
well as common cross validation techniques. The currently observable trend of research
on scalable data mining slowly moving up the stack shows the viability of our approach
of tackling the scalability problem on a multitude of layers.

Another theme in the thesis statement is enabling data scientists without a background
in systems programming to conduct scalable data mining. We tackle this challenge by
isolating user-facing functionality into simple user-defined functions. We model these
UDFs such that users can easily modify algorithm implementations without having
to understand the underlying distribution and parallelization strategies. These UDFs
typically only require a few lines of code and basic mathematical knowledge about the
data mining approach. We introduced a huge variety of UDFs throughout the work on
different levels of scalability:

• abstraction of similarity measures for parallel similarity computation in neighborhood-
based collaborative filtering (Section 3.3.1)

• abstraction for solving the linear systems in the Alternating Least Squares algorithm
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for latent factor models (Section 3.3.3)

• abstraction for stochastic gradient descent updates in latent factor models for easy
adaption of the objective function (Section 3.4.3)

• abstraction for the compensation function to enable optimistic recovery for the
distributed execution of fixpoint algorithms (Section 4.4.1)

• abstraction of the sampling technique for efficiently implementing sample generation
from distributed, block-partitioned matrices (Section 5.6)

The generality of this UDF isolation technique lets us conclude that this approach forms
an important pattern for building scalable and easy-to-use data mining libraries. We
already implemented the UDF isolation in our open-source contributions to Apache
Mahout and currently see further adoption of this pattern in younger libraries such as
Spark MLlib.

6.2 Discussion of Results and Future Research Directions

This thesis investigated scalable machine learning tasks on a variety of systems: MapReduce-
based systems, vertex-centric graph processing systems, general dataflow systems and
parameter server architectures. This gives rise to the question which systems are going
to dominate the field and industry deployments in the future. During our work on
scaling latent factor models on MapReduce in Section 3.3, we found that while we could
efficiently scale the computation, it required a lot of effort in our join implementation as
well as manual tuning and changes in the map task execution model. Modern systems
like Apache Flink automate these tasks, e.g. Flink’s optimizer selects a well working join
implementation automatically, chains joins with subsequent map tasks and furthermore
makes Flink efficiently cache iteration-invariant data. Due to the limitations of MapRe-
duce for the iterative algorithms and its lack of general operators, we think that the
current trend of moving a large class of scalable machine learning tasks to general dataflow
systems such as Apache Spark and Apache Flink will continue. The short-comings we
encountered during our investigation on scaling centrality computation on distributed
graph processing systems Section 3.5, lead us to think that specialized systems like Apache
Giraph and Pregel will also soon be subsumed by general dataflow systems. General
data flow systems are able to efficiently run vertex-centric programs, and additionally
provide the machinery for conducting relational operations on the graph data. While
recent work shows that single-machine solutions easily outperform distributed systems on
the dataset sizes used in academia [29,112,119,123], we think that these single machine
solutions will stay constrained to academic use cases. In industry scenarios, the value of
distributed graph processing on general dataflow systems comes not from the performance
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of the algorithms, but from the ability to create complex pipelines mixing ETL, machine
learning and graph-processing tasks, using a single system. Furthermore, the data is
typically collected and stored in distributed filesystems, which is again beneficial for
systems tailored to such architectures. We think that specialized asynchronous systems
for machine learning, such as our parameter server Factorbird (c.f., Section 3.4) will stay a
niche phenomenon. Such architectures only make sense in use cases with extremely large
datasets (which only a few companies in the world encounter) and require highly skilled
technical staff to develop and maintain such a system, as the inherent asynchronicity
makes the system (and development issues like debugging) very complex. For all the
reasons mentioned, we think that the majority of scalable machine learning tasks in
the coming years will run on general data flow systems like Apache Spark and Apache
Flink.

While our mechanism for optimistic recovery with compensation functions from Section 4
has great theoretical benefits like optimal failure-free performance, we acknowledge that
a major disadvantage of our proposed approach is that it incurs high implementation
complexity to both system as well as library implementors. Furthermore, the method is
only applicable for a small class of workloads. In our research, a lot of this complexity
stems from Flink’s optimizer-integrated iterations abstraction though. In the future,
an integration into simpler dataflow systems such as Spark, which already provide
lineage-based recovery could be worth looking into. Compensation functions could
replace the lineage computations in iterative parts of the workload, and thereby leverage
the already existing re-computation functionality. We think that there are still many
interesting academic questions open with regards to this line of research; e.g., whether
the compensation function can be automatically derived from invariants present in the
algorithm definition, or whether a compensation function can provide an upper bound on
the additional work incurred. It would also be interesting to find compensation functions
for an even broader class of problems. Finally, it might be beneficial to leverage memory-
efficient probabilistic data structures for storing statistics to create better compensation
functions.

We think that our work on efficient sample generation from block-partitioned matrices in
Section 5 is going to be part of a large body of work on scalable meta learning that will
be conducted in the coming years. In industry use cases, meta learning is such a tedious
and resource-intensive task that improvements in this field will have a huge real-world
impact. We expect to see systems for distributed ML with a comprehensive meta learning
layer in the future [108, 126]. This layer will automate hyperparameter selection and
ensemble learning and will offer a wide variety of cross-validation techniques. A major
advantage of such an automation is that the amount of systems programming knowledge
required for data scientists using these ML engines will be minimized. This will make
large-scale ML systems accessible for much broader audiences (e.g., trained data analysts
and statisticians). Distributed block-partitioned matrices are becoming the dominant
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physical representation for large-scale ML; we currently observe their widespread adoption
in many systems (e.g., in Apache Mahout [13], the ML library of Apache Flink [9] and
Apache Spark MLlib [126]). Sample generation from such matrices, as presented in this
chapter, will form an integral part of a future meta learning layer, as it is instrumental for
automating cross-validation. We expect to see a tighter integration of the meta learning
layer with automatic optimizers present in many systems. A promising research direction
is to provide algebraic rewrites that allow optimizers to exploit specific data partitionings
(e.g., the overlapping partitioning required for k-fold cross-validation).

6.3 Negative Implications of Scalable Data Mining Technology

It is the responsibility of scientists to reflect about potential real-world impact of their
field, therefore we feel obliged to issue our concerns about some of the current political
and economical developments that are enabled by technological developments in scalable
data collection and analysis. Nowadays, scaling data mining to datasets containing data
in the order of the whole human population is technically possible and already practiced
in cases such as Facebook, which operates a social network comprised of a sixth of the
world’s population. Furthermore, scalable data mining is constantly getting cheaper and
becoming increasingly commoditized through the availabilty of cloud-based data centers
and recent advances of data mining technology, e.g., as discussed in this thesis.

These technological advances are accompanied by a massive increase of data collection on
private individuals, conducted by both commercial and state actors. In the commercial
sphere, this data collection is motivated by the aim to improve the conversion rates in
personalized advertising, the prime source of revenue for many internet-based companies.
As the ML models used for selecting the ads to display improve with increasing amount
of profile data about the targeted persons, a technological infrastructure has been created
that allows for tracking the content consumed by individuals browsing the general web.
This tracking is realized with ads, like-buttons and tracking pixels that are embedded in
many websites but are always directly loaded from the tracking companies’ servers, which
allows the tracking companies to record the browsing behavior of visitors of the tracked
websites. The data recorded by this tracking infrastructure has been reported to contain
large portions of the online news consumption [171] as well as intimate, health-related
personal data [55]. The ability to consume news and form a political opinion in an
independent and unwatched manner as well as the privacy of personal health-related
data are vital for an open society, and should not be subject to commercially motivated
data collection. We feel that public pressure for regulation of tracking on the internet is
necessary and ultimately hope for the development of new business models that make
tracking obsolete.
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The most controversial data collection and analysis nowadays is performed by state actors.
We encounter an unprecedented bulk collection (of which many details are unclear)
of phone and internet communication data, that is performed by secret services on a
massive scale [135, 168]. Furthermore, this data collection seems to be accompanied
by a concerning lack of parliamentary supervision [57,134]. This bulk surveillance not
only violates constitutionally assured privacy rights and contradicts the principle of
presumption of innocence, but also poses a dystopian potential for misuse in the future.
An even more alarming development of which the public has recently become aware is the
military use of scalable data mining technology, which, according to many commentators,
is happening outside of limits imposed by the rule of law. Examples for this are phone and
location metadata analysis which reportedly put a journalist on a terror watchlist [160],
and the identification of unnamed targets for lethal drone strikes [133]. In the face of
these hard-to-deal-with learnings, we feel that it is the duty of our generation to oppose
these developments, and make sure that our fundamental rights are preserved in our
societies, despite of the many technological advances that are abused to restrict these
fundamental rights.

6.4 Benefits of Scalable Data Mining Technology to Other Scientific Fields

We close the thesis with a positive outlook. Scalable data processing technology has a huge
potential to transform and advance a wide field of sciences. We observe this development
already for subfields of computer science. One such field is natural language processing,
where the current abundance of available textual data and computational processing
power enables many advances. Examples are the mining of parallel text from public
available web corpora for many domains previously unavailable in curated datasets [162],
and the development of simpler and at the same time more powerful models for machine
translation systems [83]. In web science, scalable data mining allows researchers to study
the shape of the webgraph formed by billions of websites [127], and enables breakthroughs
such as the rejection of Stanley Milgram’s famous assumption of ‘six degrees of separation’
among humans through experiments on social networks with hundreds of millions of
users [16]. A non-computer science field that will be profoundly transformed by scalable
data collection and processing technology are the social sciences. Currently there is a
transition undergoing from methods of the humanities towards methods of the sciences,
accompanied by a breakdown of the division between quantitative and qualitative social
science [102]. Though in its early phase, this transformation is already producing
astonishing scientific outcomes such as a large-scale study of nation-state censorship
mechanisms [103].
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[18] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and
Daniel Warneke. Nephele/Pacts: a programming model and execution framework
for web-scale analytical processing. ACM Symposium on Cloud Computing, pp.
119–130, 2010.

[19] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs
similarity search. ACM International Conference on the World Wide Web, pp.
131–140, 2007.

[20] Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge.
ACM SIGKDD Explorations Newsletter 9(2), pp. 75–79, 2007.

[21] James Bennett and Stan Lanning. The netflix prize. Proceedings of KDD cup and
workshop, 2007.

[22] Dimitri Bertsekas and John Tsitsiklis. Parallel and Distributed Computation.
Athena Scientific, 1997.

[23] Kevin S Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed
Eltabakh, Carl-Christian Kanne, Fatma Ozcan, and Eugene J Shekita. Jaql:
A scripting language for large scale semistructured data analysis. Proceedings of
VLDB Endowment, 2011.

134



Bibliography

[24] Christopher M Bishop. Pattern recognition and machine learning, Volume 4.
Springer, 2006.

[25] Spyros Blanas, Jignesh M Patel, Vuk Ercegovac, Jun Rao, Eugene J Shekita, and
Yuanyuan Tian. A Comparison of Join Algorithms for Log Processing in Mapreduce.
ACM SIGMOD International Conference on Management of Data, pp. 975–986,
2010.

[26] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, YuanYaun
Tian, Douglas Burdick, and Shivakumar Vaithyanathan. Hybrid Parallelization
Strategies for Large-Scale Machine Learning in SystemML. Proceedings of the
VLDB Endowment, 7(7), pp. 553–564, 2014.

[27] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the
neighbourhood function of very large graphs on a budget. ACM International
Conference on the World Wide Web, pp. 625–634, 2011.

[28] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression
techniques. ACM International Conference on the World Wide Web, pp. 595–602,
2004.

[29] Paolo Boldi and Sebastiano Vigna. In-core computation of geometric centralities
with hyperball: A hundred billion nodes and beyond. Data Mining Workshops,
IEEE International Conference on Data Mining, pp. 621–628, 2013.

[30] Paolo Boldi and Sebastiano Vigna. Axioms for Centrality. Internet Mathematics,
10(3-4), pp. 222–262, 2014.

[31] Phillip Bonacich. Power and Centrality: A Family of Measures. American Journal
of Sociology, pp. 1170–1182, 1987.

[32] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Vernica.
Hyracks: A flexible and extensible foundation for data-intensive computing. IEEE
International Conference on Data Engineering, pp. 1151–1162, 2011.

[33] Vinayak Borkar, Michael J Carey, and Chen Li. Inside big data management:
ogres, onions, or parfaits? ACM International Conference on Extending Database
Technology, pp. 3–14, 2012.

[34] Leo Breiman. Bagging predictors. Machine learning, 24(2), pp. 123–140, 1996.

[35] Eric A Brewer. Combining systems and databases: A search engine retrospective.
Readings in Database Systems, 4, 2005.

[36] Yingyi Bu, Vinayak Borkar, Jianfeng Jia, Michael J Carey, and Tyson Condie.
Pregelix: Big (ger) graph analytics on a dataflow engine. Proceedings of the VLDB
Endowment, 8(2), pp. 161–172, 2014.

135



Bibliography

[37] Prabir Burman. A comparative study of ordinary cross-validation, v-fold cross-
validation and the repeated learning-testing methods. Biometrika, 76(3), pp.
503–514, 1989.

[38] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.
USENIX Symposium on Operating Systems Design and Implementation, pp. 335–
350, 2006.
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